
Dynamic Scheduling with Bayesian Updating of

Customer Characteristics

Buyun Li • Xiaoshan Peng • Owen Q. Wu

Kelley School of Business, Indiana University, Bloomington, IN 47405, {libu, xp1, owenwu}@iu.edu

January 26, 2025

In many service industries, decision making about service scheduling often relies on assessing and

prioritizing customer needs and value using professional judgment and customer data. Traditional

scheduling models assume perfect knowledge of customer service rewards and delay costs, which is un-

realistic. This paper considers the optimal scheduling problem in a multi-class queueing system where

the system manager learns the reward of serving customers dynamically. We model the scheduling

problem as a restless multiarmed bandit (RMAB) problem, with each customer class representing

an arm characterized by queue length and the manager’s belief about the reward distribution. We

derive the Whittle index for each customer class. The resulting Whittle index scheduling policy which

prioritizes the class of customers with the highest Whittle index. We prove that the Whittle index

offers an optimal solution for a system with two customer classes-one with perfect information and

one with unknown parameters-and show that it is near-optimal for more general settings numerically.

Our results show that the incentive to serve a class of customers with unknown rewards increases with

service rate, higher belief in rewards, arrival rate and length of wait, which contrasts with traditional

models. This finding highlights that as queues grow longer, the priority for serving them increases due

to extended busy periods. Furthermore, for a fixed product of service rate and reward, we find that

customer classes with higher service rates provides higher incentives for learning. By understanding

these dynamics, managers can better allocate resources, ensuring that longer queues, which imply

greater potential delays and customer dissatisfaction, are addressed more promptly.
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1. Introduction

In many service industries, decision-making on service scheduling often relies on assessing and pri-

oritizing customer needs and value by utilizing both professional judgment and data from similar

cases. In healthcare practice, nurses and physicians often adjust patient schedules based on assess-

ments of the benefits of medical care, e.g., scheduling for emergency care (Ala and Chen 2022),

surgeries (Oliveira et al. 2020), and diagnostic imaging (Déry et al. 2020). These assessments

are grounded in healthcare professionals’ evolving knowledge and experience with patients’ symp-

toms, conditions, treatment benefits, and costs of delay, which are continuously updated based on

treatment outcomes. Similarly, in the hospitality (Roy et al. 2023) and financial services (Coro

2023) industries, high-value customers are prioritized to increase revenue, with practices such as

VIP queues and direct access to financial advisors. In such settings, customer valuation is learned

through transactional histories and spending characteristics. When information on customer needs

and value is limited, optimizing the learning process while making scheduling decisions becomes

particularly challenging and important.

Motivated by industry practices, this paper explores the joint optimization of learning and

queue-scheduling decisions. While classical analyses of multi-class queues assume that the system

manager has perfect knowledge of service rewards or delay costs (see Section 2), we relax this

assumption by allowing the manager to learn the parameter of service rewards via Bayesian updating

while simultaneously making scheduling decisions. To maintain analytical tractability and align

with managerial practice, we focus learning on service rewards rather than both service rates and

rewards. In most business and operational contexts, service tasks are tightly standardized, so

service rates are already well measured and calibrated in standard operating procedures. Empirical

evidence supports this modeling choice: call center handling times show consistent stability across

daily and seasonal periods (Brown et al. 2005), operating room planners rely on extensive case-

duration planning that makes surgical processing times highly predictable at the tactical level

(Strum et al. 2000), and fast-service restaurants measure cashier cycle times to within seconds,

treating them as fixed for drive-through analysis (Teguh and Setiawan 2012). Consequently, the

main source of uncertainty and thus the lever that most influences scheduling performance is the

value realized once service is completed, whether expressed as clinical benefit, incremental revenue,
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or customer retention. By embedding Bayesian learning of service rewards directly within the

scheduling model, we place the learning mechanism where it matters most and retain the analytical

tractability needed to characterize how queue length and evolving beliefs interact to determine

optimal priorities.

We consider a single-server queueing system with K classes of customers. Customers arrive to

the system for service and wait in the queues if the server is busy. The system manager determines

a preemptive scheduling policy to serve the K classes of customers to maximize the expected total

discounted reward over an infinite horizon. The system manager does not have perfect knowledge of

the customer service rewards; in particular, the parameters of the reward distributions are unknown

to the manager. Thus, upon service completion of each customer from class k (k = 1, . . . ,K), the

system manager collects a realization from the service reward distribution, and updates their beliefs

about the parameters via the Bayes rule. We explore the structure of the optimal scheduling policy

under Bayesian updating. We choose the Beyasian updating framework because the Bayesian

framework encapsulates all the information from the past in a fixed dimension belief vector whose

conjugate update is analytically tractable; this compact state structure makes the formulation of

dynamic programming feasible and leads directly to Whittle-index characterizations. Consequently,

Bayesian learning is uniquely suited when the research goal is to derive and analyze the optimal

scheduling policy rather than a heuristic bound on long-term regret.

Since the system state includes not only the queue lengths but also the system manager’s

beliefs about the customers’ service rewards of all K classes, it is challenging to solve the optimal

scheduling policy. Instead of solving the optimal scheduling problem directly, we formulate the

dynamic scheduling problem with Bayesian updating as a restless multi-armed bandit (RMAB)

problem. Each customer class is represented as an arm, with the state of each arm being the queue

length and the manager’s belief about the reward distribution for that class. Thus, the optimal

scheduling problem is equivalent to the decision of which arm to serve next upon customer arrival

and departure. We establish the indexability of this RMAB problem and derive the corresponding

Whittle index. We obtain an explicit characterization of the Whittle index. Specifically, we show

that the Whittle index can be obtained by solving an optimal stopping problem, in which the

optimal stopping time is constrained within the busy period for the current queue length. Thus,
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the index increases with both a higher reward belief and the queue length because a longer queue

length reflects a longer busy period. Our analysis demonstrates that the scheduling policy derived

from the Whittle index is optimal in a specific scenario with two customer classes: one with perfect

reward information and the other with unknown reward parameters. For general settings, the

scheduling policy given by the Whittle index provides a near-optimal heuristic that facilitates an

efficient solution numerically.

Our paper makes several contributions. First, we provide an exact characterization of the

structure of the Whittle index within a Bayesian learning framework, bridging the gap between

dynamic learning and scheduling in queueing systems. The closed-form characterization of the

Whittle index provides a more refined analysis compared to regret analysis on different heuristics.

Second, our analysis shows that queue length directly influences the incentive to explore, in contrast

to the classical queueing literature where queue length is often decoupled from priority rules. This

insight highlights a previously underexplored interplay between learning and queue scheduling

decisions, providing insights on how service managers can effectively integrate learning with service

delivery across diverse sectors. Finally, through extensive numerical experiments, we demonstrate

that the Whittle index scheduling policy achieves near-optimal performance across a wide range of

parameter settings, reinforcing its practical value as a scalable and effective heuristic for systems

with uncertain service rewards.

2. Literature Review

Our paper builds on three streams of literature: the classical queueing scheduling problem with

multiple classes of customers, the application of multi-armed bandit (MAB) problems and their

extensions in queueing control, and the integration of learning frameworks (particularly Bayesian

learning) within queueing systems. Our work synthesizes these approaches to provide insights on

how learning of the customer reward characteristics impacts optimal scheduling decisions.

In classical queueing scheduling problems with multiple classes, it is well-known that the cµ-rule

is optimal in wide range of settings. Cox and Smith (1961) is the first to propose the cµ-rule, which

optimally solves the classical queueing scheduling problem under an average cost criterion, assuming

linear holding costs, exponential customer inter-arrival times, and general service times. Harrison

(1975a,b) extend the scope of the problem to a generalized system with both service reward and
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delay cost, studying the optimal policy to maximize total profit under a discounted reward criterion,

in which a more complex index policy allowing inserted idleness is optimal for the non-preemptive

single server systems. Klimov (1975) extends the cµ-rule to M/G/1 systems with feedback, where a

job exiting the system has some probability of being replaced by another job. The static index policy

remains optimal in various extensions; see, for instance, Tcha and Pliska (1977), Buyukkoc et al.

(1985) and Hirayama et al. (1989). Discussion of the cost structure, particularly the convex cost

structure, also gained attention. Van Mieghem (1995) offers a generalized cµ-rule for multi-class

scheduling with convex delay costs under heavy traffic assumption. Additionally, Mandelbaum and

Stolyar (2004) extends the asymptotic optimality of the generalized cµ-rule to multi-server system

in heavy-traffic settings. In summary, the classical queueing literature builds its results assuming

that the system manager knows the delay cost or the service reward information perfectly. In

contrast, we relax this assumption and study scenarios where the system manager does not have

perfect information on customer delay costs or service rewards. Instead, the system manager learns

this information within a Bayesian framework by observing the realizations of rewards and costs

upon service completion.

The second stream of literature is applications of Multi-arm bandit problem (MAB) and its

extensions (Gittins et al. 2011), e.g. branching bandit and restless bandit, on queueing scheduling

systems. Applications of the MAB model to study the queue scheduling decision may be categorized

into two streams: 1) each customer is modeled as an arm, and 2) each class of customers is modeled

as an arm.

The literature modeling each customer in the queue as an arm stems from the scheduling

problem of M/G/1 queue, where the distribution of a customer (job)’s remaining processing time

is updated after being in service for some time. Whittle (1982), Weiss (1988) are among the first

to model the M/G/1 queue as an arm-acquiring/branching multiarmed bandit (MAB) problem

where each customer is modeled as an arm. Gittins et al. (1989) is often cited in the literature as

proving the Gittins index policy’s optimality in the M/G/1 when a preemptive policy is utilized.

Lai and Ying (1988) reexamined work by Klimov (1975) on the non-preemptive M/G/1 queue with

feedback, connected it to the MAB problem, and extended it to the preemptive M/M/1 queue with

feedback. A performance analysis by Whittle (2005) provides a dynamic programming perspective
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on the optimality proof of the Gittins index policy in the M/G/1 queue. This approach, which

models each customer in an M/G/1 queue as an arm in the MAB problem, has been extensively

surveyed by Scully and Harchol-Balter (2021); for more details, we refer the readers to their review.

Most recently, the Gittins index policy using this modeling approach has been shown to be near

optimal in minimizing the mean response time in a more general preemptive M/G/m queue (Scully

et al. 2020). However, this classical approach may not be applicable to our setting. In our scenario,

updating beliefs about the reward of one customer within a class can change beliefs about the

rewards of all customers within that class, which violates the ‘frozen’ assumption of MAB problems.

The approach of modeling each class of customer as an arm often utilizes the restless arm bandit

framework, where queue lengths evolve independently of which class is in service due to ongoing

arrivals. This stream of work is highly relevant to our paper, as we model each customer as an

arm to investigate the queueing scheduling problem with learning of reward and/or cost. Whittle

(1996) first modeled the M/G/1 queue scheduling problem as a RMAB problem. However, he

concluded that the Whittle index, a well-known solution technique for RMAB problems, gener-

ally does not reduce to the cµ-rule. Glazebrook et al. (2003), Ansell et al. (2003) extended the

multiclass M/G/1 system with non-preemptive service, incorporating a server utilization cost and

convex holding costs, respectively. They provided proof of indexability and derived an expression

for the Whittle index. Argon et al. (2009) applied an RMAB framework to study the queueing

routing problem in a setting with multiple parallel queues, where servers serve both dedicated and

generic customers. More recently, Ayesta et al. (2017) used an RMAB framework to study the

queueing scheduling problem with customer abandonment, demonstrating that an index policy is

optimal when the queue capacity is restricted to one or two. Most recently, Aalto (2024) showed

that the scheduling problem of an M/G/m system with abandonment is indexable when modeled

as an RMAB problem and derived the corresponding Whittle index. We extend this body of lit-

erature by including information states based on the belief of rewards to investigate the trade-off

between parameter learning and revenue earning in queueing scheduling decisions.Although our

model adopts the RMAB framework by treating each customer class as an arm, we further bridge

the gap between queueing dynamics and bandit formulations. In particular, we derive a novel

structural result showing that the Whittle index for each class is bounded by a busy period driven
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by the queue length. This condition—where the optimal stopping time for an arm’s ‘active’ phase

cannot exceed its busy period—marks a new interface between queueing scheduling problem and

RMAB framework. As a result, our Whittle index not only accounts for belief updates but also

explicitly incorporates queueing-related constraints that have not been previously characterized in

the RMAB literature.

The Bayesian framework (Bernardo and Smith 2009) is the most classical sequential learning

framework that synergizes with queueing models, making it a natural paradigm for studying the

sequence of access services. Additionally, Bayesian learning is often combined with the multi-armed

bandit problem by incorporating an information state to model the explore-exploit trade-off in op-

erations, as surveyed by Bouneffouf et al. (2020). In queueing settings, literature has focused on

using the Bayesian framework to learn about offered load intensities (ρ), as reviewed by Asan-

jarani et al. (2021). This stream of literature focuses on estimating queue parameters for a system

whose scheduling rule is fixed, treating learning and control as separate stages. Our work instead

integrates learning and scheduling—each service decision both updates reward beliefs and sets the

next priority. The body of literature studying decision making in queueing systems incorporating

Bayesian learning is still growing, with notable contributions. Aktekin and Soyer (2012) surveyed

multiple prior distributions in queueing settings and provided an analysis on their implications for

the total cost function using examples from a call center. Afèche and Ata (2013) combined the

Bayesian learning framework with the admission pricing problem in queueing, studying a setting

where the system manager learns the revenue characteristics of the total customer profile sequen-

tially after the completion of the service. Lingenbrink and Iyer (2019) examined a system in which

customers are strategic and learn the system’s service rate through a signaling mechanism in a

Bayesian manner. Krishnasamy et al. (2021) studies a discrete-time queueing and routing problem

where the service success rate distribution parameters between each class of customers and each

server are unknown and learned via a Bayesian framework. Their paper analyzes the asymptotic

regret of total throughput for heuristics including Upper Confidence Bound and Thompson Sam-

pling algorithms with forced exploration. In Krishnasamy et al. (2021), an MAB model is used to

characterize the learning-earning trade-off. Our paper complements prior studies by being the first

to use the RMAB framework to study the queueing scheduling problem with Bayesian learning

6



of customer characteristics. Unlike existing queueing literature that employs bandit frameworks

to facilitate learning through regret analysis of heuristics, we analyze the structure of the opti-

mal queue scheduling policy under Bayesian learning, providing insights into how learning shapes

optimal scheduling decisions.

Furthermore, literature focusing on general concepts of learning (not limited to the Bayesian

framework) and decision-making in queueing settings has recently gained traction. Krishnasamy

et al. (2018) were among the first to study the regret bounds on queueing scheduling systems with

information learning. Based on the work-conserving observation, they concluded a constant holding

cost regret for learning the cµ rule via straightforward updates of the empirical mean. Zhong et al.

(2024) proposed a learn-then-schedule algorithm in a similar setting but considered customer aban-

donment. In the exploration phase, they provided a point estimate of Cµ/θ; during the exploitation

phase, the estimated Cµ/θ rule was activated. Under this algorithm, the smallest achievable regret

for the estimate grows logarithmically. Walton and Xu (2021) reviewed information learning topics

in stochastic networks and queues, with an additional focus on adversarial learning between the

exploration and exploitation of information in queues. Chen et al. (2024) determined admission

price and the service rate jointly using an online learning algorithm. Freund et al. (2023) address

the problem of selecting servers for different classes of customers, with a focus on measuring the cost

of learning in queues. Existing studies have primarily investigated learning in queueing systems

through regret analysis of various heuristics. In contrast, our paper directly analyzes the Bayesian

optimal policy and derive a closed-form characterization of the structure of the optimal scheduling

policy. This more refined analysis of the optimal policy provides precise insights into how queue

length directly affects optimal scheduling with learning.

3. The Model

In this section, we first present the dynamic programming formulation for the queueing scheduling

problem involving a single server, K customer classes, and Bayesian updating of reward parameters

(Section 3.1). Next, we approach the problem as a restless multi-armed bandit (RMAB) problem

and formulate the dynamic program for each arm (customer class) in Section 3.2.
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3.1 Multi-class Dynamic Scheduling Problem

We consider the problem of deciding a dynamic scheduling policy for a single-server queueing system

serving K classes of customers. The service system manager (‘manager’ hereafter) knows that

customers of class k ∈ {1, 2, . . . ,K} arrive according to a Poisson process with rate λk (independent

of other classes), and their service times are independent of each other and follow an exponential

distribution with mean 1/µk. The manager is able to identify each customer’s class upon their

arrival. Upon completing serving a customer of class k, the manager receives a reward that is an

independent realization of a random variable Rk ≥ 0. The manager learns about the distribution of

Rk using a Bayesian method (detailed shortly). For analytical tractability, we assume a preemptive

service discipline, i.e., at any time, the manager can choose to serve a different customer class. The

objective is to maximize the expected discounted reward over an infinite horizon, with a discount

rate γ ∈ (0, 1].1

We next detail the process of learning about the reward. For each class k ∈ {1, 2, . . . ,K}, the

reward Rk follows a probability distribution pk(rk | θk), which is a probability mass (or density)

function if Rk is a discrete (or continuous) random variable. The manager knows the functional

form of pk(rk | θk), but does not know the value of the parameter θk. The manager learns about

θk over time using the Bayesian approach. Specifically, upon completing servicing a customer from

class k, the manager receives a reward rk, which is a realization of Rk, and updates the belief about

the parameter θk as follows:

fk(θk | rk) =
pk(rk | θk) fk(θk)∫

pk(rk | θk) fk(θk) dν(θk)
, (1)

where ν(θk) is the counting (or Lebesgue) measure if θk is a discrete (or continuous) random

variable, fk(θk) is the belief about θk prior to receiving the reward rk, fk(θk | rk) is the posterior

belief, and these belief distributions are probability mass (or density) functions.

Following conventions in Bayesian analysis, we assume that the prior fk(θk) has a conjugate

distribution with respect to the likelihood pk(rk | θk). Under the assumption of the conjugate prior,

the posterior belief fk(θk | rk) and the prior fk(θk) belong to the same family of distributions,

1If there is a holding cost of hk per unit of time for a class k customer in the system, adopting the techniques by
Harrison (1975a,b), we can equivalently consider a pure-reward system with zero holding costs and service rewards
R′

k = Rk + hk/γ. We update the belief about R′
k only after each service completion.
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allowing for efficient repeated Bayesian updating using (1). This process reduces to updating the

parameters of the distributions, as detailed below.

Let χk ∈ Σk be the parameters for the family of belief distributions, and write the conjugate

prior as fk(θk;χk). According to Bernardo and Smith (2009), there exists a function gk : Σk×R →

Σk that updates the parameters χk, such that the posterior belief from (1) is:

fk(θk | rk) = fk(θk;χ
′
k) with χ′

k = gk(χk, rk). (2)

Therefore, the parameter χk contains all the information needed to determine the predictive distri-

bution of the reward Rk and serves as state variable for our dynamic scheduling decision formulated

below.

Let qk ∈ Z+ be a non-negative integer denoting the number of class k customers in the system

and define q := (q1, . . . , qK) as the vector of customer counts in the system. Let χ := (χ1, . . . , χK)

be the vector of knowledge state about the reward distributions. Given the assumption of Poisson

arrivals, exponential service times, and preemptive queueing discipline, the manager’s decision on

which customer class to serve can be based on (q,χ) alone, without needing information about

the currently served customer class or the length of time they have been in service. Therefore, the

state of the system is s := (q,χ), which belongs to the state space S := ZK
+ ×

∏K
k=1Σk.

Let A := {0, 1, . . . ,K} denote the action space, where action 0 corresponds to idling and action

k ≥ 1 corresponds to serving customer class k. For state s = (q,χ), the set of customer classes the

manager can choose to serve is

A(q,χ) := {k : qk > 0, k = 1, 2, . . . ,K}. (3)

We note that the optimal decision must satisfy the following property: the server stays active if

and only if there is at least one customer in the system. This follows from the fact that, under

a preemptive queueing discipline and non-negative rewards, idling (action 0) is suboptimal when

customers of any class are present.

The system state evolves as follows. If the current state is (q,χ), upon the arrival of a customer

of class k, the system state changes to (q + ek, χ), where ek is a K-dimensional vector with the

k-th entry equal to 1 and all other entries equal to 0. Upon completing serving a customer of class

k, the manager collects a reward rk and updates the belief about θk; the system state transitions
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to (q − ek, χ + (gk(χk, rk) − χk)ek). For notational convenience, we denote the state of updated

knowledge as g(χ, rk) := χ + (gk(χk, rk) − χk)ek. The manager decides which customer class to

serve immediately after system state changes, triggered by either an arrival or a service completion.

We first formulate the dynamic scheduling problem as a continuous-time Markov decision pro-

cess with discounted reward. According to Puterman (1994), it suffices to focus our attention on

the set of stationary and deterministic policies. Let π = (d)∞ denote a stationary policy with a

deterministic decision rule, d : S → A. Let (Qπ(t),Xπ(t)) denote the state of the system at time

t under policy π, where Qπ(t) = (Qπ
1 (t), . . . , Q

π
K(t)) denotes the number of customers in each class

at time t and Xπ(t) = (Xπ
1 (t), . . . , X

π
K(t)) denotes the state of knowledge about rewards. Let Dπ

k,n

denote the departure time of the n-th customer within class k under policy π and their reward

generated as Rk,n.
2 Then, the total expected discounted reward under policy π given an initial

state (q,χ) can be written as:

V π(q,χ) := E

[
K∑
k=1

∞∑
n=1

e−γDπ
k,nRk,n

∣∣∣∣ (Qπ(0),Xπ(0)) = (q,χ)

]
.

The policy π determines which customer class to serve at each arrival or departure, directly

influencing both the rewards accrued and the information accumulated about the reward distri-

butions. Since the reward received at time t is discounted by e−γt, dynamic scheduling is crucial,

as delays reduce the present value of rewards. A well-designed policy π should strike a balance

between two objectives: (1) exploiting the current knowledge of reward distributions to maximize

immediate discounted rewards, and (2) exploring certain customer classes to acquire information

that improves future scheduling decisions.

Let Π denote the set of stationary and deterministic policies. Given the initial state (q,χ), the

manager’s problem can be written as:

V (q,χ) = sup
π∈Π

V π(q,χ). (4)

Next, we rewrite the problem in (4) as a discrete-time Markov decision problem by employing

uniformization (Puterman 1994). Let m ≥ max
k

{
µk

}
+
∑K

i=1 λi denote the uniformization constant.

2The reward Rk,n is independent of everything else, as assumed at the beginning of Section 3.1. In particular, the
reward does not depends on the policy π, but its contribution to the objective, e−γDπ

k,nRk,n, depends on policy π.
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Then, the value function V (q,χ) defined in (4) satisfies the following Bellman equations:

V (q,χ) = max
k∈A(q,χ)

{
β

(
µk

m
E
[
Rk + V (q − ek, g(χ, Rk)) | χ

]
+

K∑
i=1

λi

m
V (q + ei,χ) +

(
1−

µk +
∑K

i=1 λi

m

)
V (q,χ)

)}
, q ̸= 0, (5)

V (0,χ) = β

( K∑
i=1

λi

m
V (ei,χ) +

(
1−

∑K
i=1 λi

m

)
V (0,χ)

)
, (6)

where β = m/(m+ γ) is the discounting factor in the equivalent uniformized discrete-time model.

On the right side of (5), the first term is the uniformized probability of service completion in

the next period, µk/m, times the expected reward generated by the service completion and the

future value under the updated belief state condition on current belief state, the second term is

the uniformized probability of customer arrival in the next period, λi/m, times the corresponding

value function, and the last term represents the case where no arrival or departure occurs in the

next period and the state remains the same.

It is well known that the index policy given by the Gittins index is optimal for an M/G/1

queue under general conditions. However, this policy is not applicable when reward distributions

are unknown. The classic proof of the optimality of the Gittins index formulates the problem as

an arm acquiring bandit problem, which is a special case of multiarm bandit (MAB) problem, in

which each customer in the system is modeled as an individual arm and the scheduling problem is

to decide which arm to pull (Gittins et al. 2011). However, this argument fails in the system with

unknown reward distributions, because when the manager updates the belief about the rewards

of customer class k, the beliefs about the rewards of all customers (arms) of class k currently

in the system are updated as well. In other words, the states of the other arms are no longer

frozen, violating the critical assumption of the MAB. Recognizing the special characteristics of our

problem, we take an alternative approach to model the problem as a restless multiarmed bandit

problem (RMAB) in the next section.

3.2 Restless Multi-Arm Bandit (RMAB) Approach

In this section, we model each customer class as a restless arm. Thus, there are K arms, and the

state of arm k is (qk, χk). Every decision involves pulling exactly one arm or staying idle if no

customer is in the system. Upon pulling an arm (i.e., choosing to serve a customer of a certain
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class), the states of all arms evolve concurrently due to the possible arrivals of customers of all

classes, making this problem an RMAB problem.

A widely studied solution to the RMAB problem is the Whittle index policy, introduced by

Whittle (1988). This approach treats each arm as an separate Markov decision process and com-

putes a corresponding Whittle index, which serves as a measure of the arm’s priority for activation.

In general, multiple arms can be activated, but in the specific context of our single-server queue,

only one arm can be activated in each period.

We formally define the Markov decision process for each arm as follows. For an arm k (k =

1, 2, . . . ,K), the state is (qk, χk), and the manager chooses between two actions, A(Active) and

P (Passive), to maximize the long-run expected discounted reward from arm k. When active, arm

k serves customers and generates a random reward upon service completion. When passive, arm k

collects a deterministic reward, wk ≥ 0, known as the passive reward, representing the compensation

for not serving customers. Intuitively, wk quantifies how much the manager would be willing to

“accept” as a reward to forgo serving customers of class k in the queue. A larger wk indicates a

higher opportunity cost of not serving customers of class k. This passive reward, wk, serves as a

parameter for the Markov decision problem and is critical in determining the Whittle index in the

next section.

Specifically, the arrival of the class k customer occurs with probability λ̃k = λk
m in all periods,

which makes all arms restless. While arm k is active and class k is not empty (qk ≥ 1), a service

completion of a class k customer occurs with probability µ̃k = µk
m , and the state remains unchanged

with probability 1 − µk+λk
m . Upon service completion, rk, a realization of Rk, is received, and the

belief of the reward, χk, is updated to gk(χk, rk). If the queue is empty (i.e., qk = 0), and arm k

stays active, no reward is received. If arm k is in passive mode, the manager receives a constant

reward of wk per period, a customer arrival occurs with probability λ̃k, and the state remains

unchanged with probability 1− λ̃k.

The Bellman equation for arm k when the passive reward is wk ≥ 0 can be written as follow:

For (qk, χk) ∈ Z+ × Σk:

Jk(qk, χk, wk) = max
{
JA
k (qk, χk, wk), J

P
k (qk, χk, wk)

}
, (7)

where Jk(qk, χk, wk) denotes the maximum long-run expected discount reward when the current
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state is (qk, χk), J
A
k (qk, χk, wk) and JP

k (qk, χk, wk) are the respective long-run expected discounted

reward of choosing active or passive mode for one period and then acting optimally. Specifically,

JA
k (qk, χk, wk) =


β
[
µ̃kE

[
Rk + Jk

(
qk − 1, gk(χk, Rk), wk

)
| χk

]
+ λ̃kJk(qk + 1, χk, wk) + (1− λ̃k − µ̃k)Jk(qk, χk, wk)

]
,

if qk ≥ 1

β
[
λ̃kJk(1, χk, wk) + (1− λ̃k)Jk(0, χk, wk)

]
, if qk = 0.

(8)

JP
k (qk, χk, wk) = wk + β

[
λ̃kJk(qk + 1, χk, wk) + (1− λ̃k)Jk(qk, χk, wk)

]
. (9)

Note that when there is no class k customers (qk = 0), we have JP
k (qk, χk, wk) ≥ JA

k (qk, χk, wk) for

any wk ≥ 0.

4. The Index Policy for Dynamic Scheduling

This section derives the Whittle index for the RMAB problem discussed in section 3.2. In Section

4.1, we establish the indexability and derive an expression for the Whittle index for the RMAB

problem. Furthermore, in Section 4.2, we examine a special case where the index policy based on

the Whittle index is optimal. Finally, in Section 4.3, we discuss the optimality of the Whittle index

scheduling policy in more general settings.

4.1 Indexability and Whittle Index

The challenge associated with the index-based policy given by the Whittle index is that the index

policy is only defined for RMAB problems that are indexable, a condition that is often difficult to

establish. Moreover, it is often hard to find an expression for the Whittle index. In this subsection,

we establish the indexability of the problem and derive an expression for the Whittle index by

studying the problem formulated in (7)-(9).

When the passive reward is wk, we let Sk(wk) denote the set of states where the passive action

is optimal. Formally,

Sk(wk) :=
{
(qk, χk) ∈ Z+ × Σk : JP

k (qk, χk, wk) ≥ JA
k (qk, χk, wk)

}
. (10)

For Whittle index to exist for each state of the restless arm k, Whittle (1988) requires that for

each restless arm k ∈ {1 . . .K} to have the following monotonicity property: As the passive reward

increases, the collection of states which choose the passive action also increases. Whittle (1988)

refers to this property as indexability.
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Definition 1. (Whittle 1988) The restless arm k is indexable if Sk(wk) is increasing in wk, namely,

Sk(wk) ⊆ Sk(w
′
k), for wk ≤ w′

k.

Furthermore, if a restless arm k is indexable, we can find the Whittle index for each state

(qk, χk) of arm k. The definition of the Whittle index for state (qk, χk) is given in Definition 2.

Definition 2. (Whittle 1988) When the restless arm k is indexable, the Whittle index for state

(qk, χk) ∈ Z+ is defined as

vk(qk, χk) := inf {wk : (qk, χk) ∈ Sk(wk)} . (11)

Should we establish the indexability of the restless arm k, by Definition 2, the Whittle index

for arm k is the minimum passive reward such that the manager is indifferent in choosing active or

passive mode for arm k.

In period t, let QA
k (t) and XA

k (t) denote the number of customers of class k in the system and

the state of the belief about the reward Rk, respectively, when arm k operates under a special

policy, π̃A, which always chooses active action in all states. We define Bk(qk) as the length of a

busy period starting with qk customers in the system, which is given by:

Bk(qk) = inf
{
t ≥ 0 : QA

k (t) = 0 | QA
k (0) = qk

}
. (12)

The busy period Bk(qk) represents the number of consecutive periods until the class k queue is

empty if it stays in the active mode in all periods.

Let RA
k,t denote the conditional reward based on the manager’s belief regarding the reward

class k customer up to time t under policy π̃A, formally defined as: RA
k,t := Rk | XA

k (t). Here,

XA
k (t) encapsulates the manager’s belief about customers of class k up to and including time t. It

is important to note that RA
k,t includes all reward information that has been collected up to and

including period t, particularly accounting for any customer departure occurring in period t. Thus,

RA
k,t effectively describes the conditional reward to be collected at the next departure after the

period t. The remainder of this subsection focuses on proving that the restless arm k is indexable

and that its Whittle index can be written as follows: For qk > 0,

vk(qk, χk) = βµ̃k sup
1≤τ≤Bk(qk)

E
[∑τ−1

t=0 βtRA
k,t | QA

k (0) = qk, X
A
k (0) = χk

]
E
[∑τ−1

t=0 βt | QA
k (0) = qk, X

A
k (0) = χk

] , (13)
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where the supremum is taken over all possible stopping times, τ , constrained to be less than or

equal to the busy period Bk(qk). We define vk(qk, χk) = 0 for qk = 0 to ensure the completeness of

the definition.

Observe that the index defined in (13) bears resembalance to the expression for a Gittins index.

Lemma 1 establishes that the index, vk(qk, χk), corresponds to the Gittins index of an auxiliary

Multi-Armed Bandit (MAB) problem. Corollary 1 then leverages this connection to demonstrate

the properties of index vk(qk, χk), which serve as important building blocks to establish that index

vk(qk, χk) is the Whittle index for the RMAB problem.

To construct such an auxiliary MAB problem, we recognize that the functional form of vk(qk, χk)

is the same as that of a Gittins index (Gittins et al. 2011), except for the part where the stopping

time is restricted by the busy period. Therefore, the intuition for the construction of this problem

is to force the optimal stopping time within the busy period by “terminating” the arrival process

once the queue becomes empty. Furthermore, when an arm is not pulled, its state is frozen, as

required by the MAB problems.

Specifically, the auxiliary MAB problem consists of K arms, where only one arm can be pulled

in each period. When arm k is pulled, it operates according to the active mode dynamics of the

restless arm k described in Section 3.2, except that when the arm is empty (i.e., qk = 0), it remains

empty, meaning that no further arrival events occur in the system regardless of the action taken,

and generates a reward of 0. Lemma 1 formalizes the construction of the auxiliary MAB problem.

Lemma 1. The index specified in equation (13) is the Gittins index for an auxiliary MAB with K

arms whose states are queue length and belief about the rewards for each class, denoted by Qk(t) and

Xk(t), for all k ∈ 1 . . .K, respectively. In each period, the manager chooses arm k with nonempty

queue and serves that class. Conditioning on the states, Qk(t) = qk, Xk(t) = χk, the state transition

follows:

(i) If Qk(t) = 0, then (Qk(t+ 1), Xk(t+ 1)) = (0, χk);
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(ii) If Qk(t) ≥ 1, then

(Qk(t+ 1), Xk(t+ 1)) =



(qk + 1, χk) w.p. λ̃,

(qk − 1, X̃k) w.p. µ̃,

(qk, χk) w.p. 1− λ̃− µ̃,

where the random variable X̃k is given by X̃k = g(Rk, χk).

For the rest of the arms, the states are frozen, i.e. (Qj(t+1), Xj(t+1)) = (Qj(t), Xj(t)) for j ̸= k.

Recognizing that the index, vk(qk, χk), is a Gittins index for an MAB problem, Corollary 1

summarizes its technical properties to support the proof showing that the index, vk(qk, χk), is the

Whittle index for the RMAB problem.

Corollary 1. The following hold:

(i) The supremum in equation (13) is attainable by a stopping time;

(ii) Let τ be the stopping time that attains the supreme in equation (13). Then, For each (qk, χk)

such that qk ≥ 1, the stopping time τ has a stopping set, denoted by Ω0(qk, χk), which may be

chosen to be at set such that

{(q′k, χ′
k) : vk(q

′
k, χ

′
k) < vk(qk, χk)} ⊆ Ω0(qk, χk) ⊆ {(q′k, χ′

k) : vk(q
′
k, χ

′
k) ≤ vk(qk, χk)};

In addition to providing the analytical properties necessary to show that vk(qk, χk) is the Whittle

index for the RMAB problem, Lemma 1 and Corollary 1 also shed light on the computation

methods of vk(qk, χk). The computation of the Whittle index is often a challenging task, as it is

heterogeneous across problems. However, by showing that vk(qk, χk) corresponds to the Gittins

index of the auxiliary MAB problem, we are equipped well-established methods to compute this

index, e.g., the state elimination method, the largest remaining index algorithm, etc.

Importantly, Lemma 2 demonstrates that the index, vk(qk, χk), is increasing in the number of

customers in the system of that class.

Lemma 2. vk(qk, χk) is increasing in qk.

As established in Lemma 2, the index vk(qk, χk) (later shown to be the Whittle index) increases
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as the queue length of that class increases. This observation suggests that the manager’s incentive

to explore a customer class with unknown reward parameters also increases with queue length.

We are now in the position to establish Theorem 1 on the indexability of the RMAB problem

and the index given in (13) being the Whittle index for the dynamic scheduling problem.

Theorem 1. For all k ∈ {1, 2, . . . ,K}, we have

(i) The arm k is indexable;

(ii) vk(qk, χk) defined in Equation (13) is the Whittle index of the restless arm k defined in Equa-

tion (11).

Theorem 1 establishes the basis for the Whittle index scheduling policy in the single-server

queueing system with the learning of service rewards, formally defined below.

Definition 3 (Whittle Index Scheduling Policy). Let the Whittle index for class k be vk(qk, χk) as

expressed in (13). Upon each arrival or departure of a customer (with at least one customer in the

system after the departure), the Whittle index scheduling policy selects the customer class k∗ with

the highest Whittle index to be served. Formally, this is expressed as:

k∗ ∈ arg max
k∈{1,...,K}

vk(qk, χk),

and ties are resolved by selecting at random with equal probability among the tied classes.

While this policy is not generally optimal for the queueing scheduling problem with Bayesian

learning, as formulated by (5)-(6), it is optimal in the specific case of two customer classes: one

with a known reward distribution and the other with an unknown reward distribution, as discussed

in the next subsection.

4.2 Optimality of the Whittle Index Scheduling Policy for Two-Class System

This subsection considers a system with two classes of customers, that is, K = 2. In particular, we

consider that the system consists of one class of customers whose distribution of rewards is known

to the manager and one class of customers with unknown reward distribution. We prove that the

Whittle index scheduling policy in Definition 3 is optimal for this special case.

In this system, we assume that the manager knows the distribution of the reward R1 of class 1

and learns about the reward distribution parameters for class 2 customers, R2, via Bayesian up-

dating. The following lemma provides a characterization of the Whittle index of class 1.
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Lemma 3. Suppose class 1 customers have a known reward distribution with mean r1. Then, the

Whittle index of class 1 is given as follows:

v1(q) =

 βµ̃1r1, q ≥ 1,

0, q = 0.

Note that if there is at least one customer of class 1 in the system, more arrivals of class 1

customers do not change the Whittle index of class 1. This contrasts with Lemma 2 in that the

Whittle index generally increases in the number of customers in the system.

We now establish that the non-idling scheduling policy that follows the Whittle index is optimal

for this special case.

Theorem 2. The Whittle index scheduling policy is optimal for the single-server queueing system

with two classes: one customer class with known reward distribution and the other customer class

with unknown reward distribution.

Theorem 2 holds for any general belief model of unknown class rewards.

For the rest of this subsection, we discuss a special reward model in which the belief parameter

is one-dimensional. Specifically, we assume that the reward for a class-2 customer is modeled as a

random variable following a Bernoulli distribution with an unknown parameter θ, which governs

the probability of generating either a high reward, rh, or a low reward, rl, where 0 ≤ rl ≤ rh. The

parameter θ can take one of two possible values: pm or pb, with 0 ≤ pm ≤ pb ≤ 1. The scenario

corresponding to θ = pm (m for “malo”) is referred to as the pessimistic scenario, while the scenario

corresponding to θ = pb (b for “bono”) is referred to as the optimistic scenario. Using the Bayesian

model described in Section 3.1, the reward probability distributions are given by:

p(rh | θ = pm) = pm, p(rl | θ = pm) = 1− pm;

p(rh | θ = pb) = pb, p(rl | θ = pb) = 1− pb.

The manager’s belief state is represented by a scalar χ ∈ (0, 1), which denotes the probability that

class-2 customers are in the optimistic scenario. Specifically, the probability that θ takes the value

pm is given by f(θ = pm) = 1 − χ, while the probability that θ takes the value pb is given by

f(θ = pb) = χ. This structure is commonly referred to as the Bernoulli-Bernoulli prior-posterior

structure.
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Let χ and χ denote the Bayesian posterior belief updates corresponding to a prior belief χ,

depending on whether the system manager observes rh or rl upon service completion. These

updates are given by:

χ = g(χ, rh) =
χpb

χpb + (1− χ)pm
,

χ = g(χ, rl) =
χ(1− pb)

χ(1− pb) + (1− χ)(1− pm)
.

The expected reward r2(χ) when the system manager’s belief is χ is given as follows: For χ ∈ (0, 1),

r2(χ) = E[R2 | χ] = χ(pbrh + (1− pb)rl) + (1− χ)(pmrh + (1− pm)rl).

To avoid trivial cases, we assume that µ2r2(0) ≤ µ1r1 ≤ µ2r2(1). Lemma 4 states the mono-

tonicity property of the Whittle index v2(q, χ) on the scalar χ. In addition, this lemma also provides

lower and upper bounds of the Whittle index v2(q, χ).

Lemma 4. The index v2(q, χ) increases in χ. Moreover, the following holds: For q ≥ 1 and

χ ∈ [0, 1], βr̄2(χ)µ2 ≤ v2(q, χ) ≤ v̄2(χ) where

v̄2(χ) = βµ̃2 sup
τ≥1

E
[∑τ−1

t=0 βtR2,t | X2(0) = χ
]

E
[∑τ−1

t=0 βt | X2(0) = χ
] .

Thus, Theorem 2 and Lemma 4 immediately lead to the following corollary stating that optimal

policy can be characterized by a switch curve q2(χ).

Corollary 2. There exists a decreasing function q2 : [0, 1] → [1,+∞] that characterizes the optimal

policy: The server follows a nonidling policy and serves class 2 if Q2(t) ≥ q2(X2(t)). In particular,

q2(χ) = 1 if µ̃2r̄2(χ) ≥ µ̃1r1 and q2(χ) = ∞ if v̄2(χ) ≥ βµ̃1r1.

Figure 1 illustrates an example function from Corollary 2 that characterizes the optimal schedul-

ing policy. The blue region denotes the states where the optimal action is to serve class 1 customer;

the orange region denotes the states where the the optimal action is to serve class 2 customer. The

boundary between the two regions showcases the decreasing function that characterizes the optimal

scheduling policy, as specified in Corollary 2. The bottom left part of the curve shows that for a

given belief, χ, if Q2(t) ≥ q2(χ) the optimal policy is to serve class 1, otherwise the optimal policy

is to serve class 2.
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Figure 1: Optimal scheduling policy for a class of customer with known reward and a class of
customer with unknown reward parameters—λ1 = 3, λ2 = 3, µ1 = 9, µ2 = 10, r1 = 3, rh = 4, rl =
2, pb = 0.6, pm = 0.2.

Moreover, for this particular reward model, we observe that calculating the Whittle index can

be significantly simplified.

Lemma 5. Suppose the rewards rh and rl for both types of customers undergo a linear transfor-

mation defined by f(x) = ax + b, resulting in transformed rewards r′h = arh + b and r′l = arl + b.

Then, the Whittle index for class k ∈ {1, . . . ,K}, denoted by vk(qk, χk | r′h, r′l), satisfies:

vk(qk, χk | r′h, r′l) = a · vk(qk, χk | rh, rl) + b.

In other words, the Whittle index under the transformed rewards is equivalent to the linear

transformation of the original Whittle index.

Lemma 5 provides an efficient method for determining the Whittle index for any combination

of rewards. Suppose that we have computed the Whittle index for specific rewards rh and rl and

want to determine the index policy for a different set of rewards r′h and r′l. It suffices to solve the

system of equations r′h = arh + b and r′l = arl + b, then determine the corresponding index policy

by the transformed Whittle index.

Using a special case of a two-class system with unknown reward distributions, Lemma 6 shows

that the Whittle index responds differently to changes in the service rate µ and the expected reward

r, even when their product rµ remains constant. This contrasts with classical queue scheduling
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results, such as the rµ rule.

Lemma 6. Consider a system with K = 2 classes of customers, whose reward distributions are

unknown and follow a Bernoulli-Bernoulli structure. In the ground truth, the expected reward for

class 1 is H, and for class 2 it is L, with H > L. The system manager knows the value of H, L,

µ1, and µ2, but learns which class generates the higher reward. If µ1 increases by a factor a > 1

and H decreases by a factor 1
a , keeping r1µ1 = Hµ1 constant, the Whittle index for class 1 strictly

increases, while that for class 2 strictly decreases.

Lemma 6 underscores the adaptability of the Whittle index in systems with changing param-

eters, particularly on changing service rates. Unlike classical scheduling rules such as the rµ rule,

which treat the product of the reward and service rate as the sole determinant of priority, the Whit-

tle index responds dynamically to changes in system parameters. By increasing the index value

with service rates, the Whittle index policy implicitly focuses on facilitating the system’s ability to

gather information about uncertain rewards faster. In practical terms, this adaptability makes the

Whittle index particularly effective in environments where service rates and rewards changes. We

numerically demonstrate the implication of this results in section 5.4.

4.3 Whittle Index Scheduling Policy in the General System

In general settings, e.g., a single-server system with two known classes and one unknown class, or

both classes with unknown rewards, the Whittle index scheduling policy is not necessarily optimal;

we illustrate this with an example.

For example, consider a system with three customer classes: two with known rewards and a

third with unknown rewards that are learned over time. Suppose that one of the known classes,

class 1, generates a reward r1 upon completion of the service, which is significantly higher than the

reward of the other known class (class 2), denoted r2, such that r1 ≫ r2. In addition, we assume

that class 1 has a very high traffic intensity. Furthermore, the reward r1 exceeds the upper bound of

the index for the unknown class (class 3): βµ̃1r1 > v̄3(χ). In this scenario, it is optimal to prioritize

class 1 whenever its queue is not empty, regardless of reward beliefs or queue lengths. In a state

where the queue for class 1 is empty, but the queues for classes 2 and 3 are not, and class 2 has a

higher expected reward than class 3 based on current beliefs, the Whittle index scheduling policy

might recommend serving a class 3 customer. This decision would forgo the immediate higher
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reward from class 2 in favor of exploring the unknown reward parameters of class 3. However, such

exploitation-for-exploration trade-offs can be suboptimal. After severing the class 3 customer for

the period, instead of utilizing the information learned from exploration, the system will spend a

long time serving class 1 customers in the next future periods, as class 1 has a very high traffic

intensity. As a result, the potential value of exploring class 3 can be significantly diminished, as the

discounting of future rewards reduces the value of learning as the system will be busy serving class

1. In this scenario, it is suboptimal to forgo immediate rewards from class 2 in order to explore

class 3, because the value of exploration is significantly reduced by the extended periods spent

serving class 1 customers, whereas collecting the higher immediate reward could increase the total

discounted reward.

Although the Whittle index scheduling policy does not guarantee an optimal solution in general

settings, it remains near-optimal, as we will show in Section 5.4 and is computationally efficient. The

portion of states where the action of the index policy diverges from the optimal policy, as described

in the above cases, is small, so the Whittle index scheduling policy performs well overall. In

terms of computational efficiency, the Whittle index for each class can be computed independently.

Therefore, increasing the number of classes in the system leads to a linear increase in computation

for the Whittle index, in contrast to the exponential growth in computation associated with the

dimensionality of the state space.

5. Numerical Studies

In this section, we explore the numerical properties of the Whittle index we derived in Section 4.1

and evaluate the performance of the Whittle index scheduling policy using Monte Carlo simulation.

We begin by reviewing the Bernoulli-Bernoulli prior-posterior structure employed throughout our

numerical study in Section 5.1. In Section 5.2, we examine the sensitivity of the Whittle index to

the state of the system, including the queue length and the reward belief. Section 5.3 analyzes the

impact of arrival and service rates on the Whittle index. Finally, in Section 5.4, we demonstrate that

the Whittle index scheduling policy performs near optimally and outperforms classical heuristics

in various parameter settings.
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Figure 2: Sensitivity of Whittle Index to System States

(a) Sensitivity of Whittle Index to Belief (b) Sensitivity of Whittle Index to Queue Length

5.1 Numerical Setting

In Section 5, we examine the changes in the Whittle index values and the performance of the

Whittle index scheduling policy, assuming that a class with an unknown reward distribution follows

the Bernoulli-Bernoulli prior-posterior structure described in Section 4.2. Specifically, we model the

reward for a class-2 customer as a Bernoulli random variable with an unknown parameter θ, which

governs the probability of a high reward rh or a low reward rl (0 ≤ rl ≤ rh). The parameter θ can

take two values: pm (pessimistic) or pb (optimistic), where 0 ≤ pm ≤ pb ≤ 1. The manager’s belief

state, χ ∈ (0, 1), represents the probability that class-2 customers are in the optimistic scenario.

Specifically, f(θ = pm) = 1 − χ and f(θ = pb) = χ. We select this prior-posterior model because

it is one of the few where the manager’s belief state is one-dimensional, enabling an intuitive

demonstration of the numerical results.

5.2 Sensitivity of the Whittle Index to States

In this section, we analyze how the Whittle index varies across system states (qk, χk) for a class k

customer, whose reward distribution is unknown and learned by the manager using the Bernoulli-

Bernoulli prior-posterior structure described in Section 5.1. The unknown class k has the following

parameters: In the optimistic scenario, 60% of customers are high-reward, i.e., pb = 0.6, while in

the pessimistic scenario, 40% are high-reward, i.e., pm = 0.4. For class k, the arrival rate is λk = 4

and the service rate is µk = 10.

Figure 2(a) demonstrates the changes in vk(qk, χk) with respect to χk for queue lengths of 5, 25,
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Figure 3: Sensitivity of Whittle Index to Queue Parameters

(a) Sensitivity of Whittle Index to Arrival Rate (b) Sensitivity of Whittle Index to Service Rate

and 45. The index value increases with belief across all queue lengths, with shorter queue lengths

being more sensitive to these increases. Furthermore, the relationship between index value and

belief exhibits a concave shape, and shorter queue lengths reach the platform at a slower rate. In

particular, in belief states 0 or 1, all queue lengths yield the same index value, regardless of the

queue length. This is due to the structure of the prior distribution: at 0 or 1, the belief remains

the same for all future state transitions.

Figure 2(b) illustrates how vk(qk, χk) changes with respect to qk using the same example, with

samples in beliefs of low, medium and high reward. As demonstrated in Lemma 2, the index

vk(qk, χk) increases with qk. Figure 2(b) also shows that the index value is concave with respect

to the queue length. In states with higher beliefs, the effect of the queue length on the index

diminishes more rapidly. This is because in higher belief states, the busy period is less likely to

become a binding constraint, which aligns with our discussion of Figure 2(a).

5.3 Sensitivity of the Whittle Index to Queue Parameters

In this section, we examine how the Whittle index changes with respect to the queueing parameters

λk and µk for a class k customer, whose reward distribution is unknown and follows the Bernoulli-

Bernoulli prior-posterior structure described in Section 5.1. The reward parameters in this study

are the same as those in Section 5.2, namely pb = 0.6 and pm = 0.4. To explore the impact of

queueing parameters, we sample four distinct states that represent a combination of long/short

queue lengths and high/low reward belief states.

Figure 3 shows the Whittle index value at different arrival and service rates for a given class.
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Figure 3(a) plots the index value of a class of customers with unknown rewards with the Bernoulli

prior structure , denoted by k, in four different states: (5, 0.25), (45, 0.25), (5, 0.75), and (45, 0.75)

representing states with long/short queue lengths and high/low reward beliefs where the service rate

µk is 10 and arrival rates varying from 2 to 7 with an increment of 0.5. The states are represented

by different colors in the figure. Figure 3(a) shows that the arrival rate increases the index value in

states with a short queue length and has little effect in states with a long queue. The monotonicity

follows from the property of the Whittle index vk(qk, χk) in equation (13) that a higher arrival rate

stochastically increases the busy period in vk(qk, χk) and therefore increases the index value. For

states with a short queue, the increase in the busy period by arrival rates is more significant; on

the other hand, for states already with a long queue, the busy period in vk(qk, χk) is not likely to

be a binding restriction; therefore, an increase in arrival rates has little effect on the index value.

Furthermore, the increase in index value in the arrival rate is less significant in high belief states.

For a high belief state, the optimal stopping time is shorter than that of a low belief state because

a high belief state could possible transition to more states that lower rewards, i.e. a larger stopping

set. Therefore, in a high belief state, it is less likely that the busy period in vk(qk, χk) is a binding

restriction.

Similarly, Figure 3(b) shows the index values of a class of customers with unknown rewards,

denoted by k, in the same four states where the service rate λk is 4 and the service rates µk increase

from 7 to 12 with an increment of 0.5. Figure 3(b) shows that a higher service rate leads to a higher

index value, since faster service would lead to a higher reward per unit collected. Interestingly, we

observe that the slope of the index value with respect to the increase in service rate is state-

dependent, particularly when the reward belief is low (χ = 0.25). In such cases, the index value for

states with longer queues increases more rapidly with the service rate. As the service rate increases

from 7 to 12, we see that the state with a shorter queue length increases slower than that with a

longer queue length. This is because the busy period in vk(qk, χk) is shorter with a faster service

rate, which is more likely to be a binding restriction when the queue length is shorter. However,

we see that the index value in high belief states increases similarly to the rµ rule, where the queue

length has little impact on the index value, when the reward belief is high enough. This result is

supported by the index change curve that overlaps with the service rates in states (5, 0.75) and
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(45, 0.75) in Figure 3(b).

5.4 Performance of Whittle Index Scheduling Policy

In this section, we evaluate the performance of the Whittle index policy against different benchmark

scheduling policies. Using Monte Carlo simulations, we assess the performance of these policies

based on their total discounted rewards. Our baseline analysis demonstrates that the Whittle

index scheduling policy achieves near-optimal performance across diverse scenarios and identifies

parameter regions where it significantly outperforms classical learning heuristics. Furthermore,

by leveraging the properties of the Whittle index identified in Section 4.2, we demonstrate that it

dynamically adjusts to changes in the expected reward r and the service rate µ even if their product

rµ stays the same, highlighting the unique roles of r and µ in the queue scheduling problem with

learning of customer characteristics.

In our simulation, we consider a system with two customer classes (K = 2), each with an

unknown reward distribution to be learned by the manager using the Bernoulli-Bernoulli prior-

posterior structure described in Section 5.1. For both classes, each customer generates either a

high reward of rh = 20 or a low reward of rl = 2. In the optimistic scenario, 60% of customers

generate high rewards (pb = 0.6), while in the pessimistic scenario, 40% generate high rewards

(pm = 0.4). We assume that class 1 belongs to an optimistic reward scenario, and class 2 belongs

to an optimistic reward scenario. Note that this information is the ground truth and is not known

by the system manager. In this case, giving class 1 customer priority to the service results in an

upper bound to the total discounted reward, and giving class 2 customer priority to the service

results in a lower bound to the total discounted reward.

We consider five benchmark policies to evaluate the performance of Whittle index scheduling

policies: the upper and lower bound policies, the optimal policy by solving the dynamic pro-

gramming via value iteration methods, the Thompson sampling policy (Thompson 1933) and the

ϵ-greedy policy Sutton and Barto (1998). Classical heuristics such as Thompson Sampling and the

ϵ-greedy policy in our problem make scheduling decisions based on the reward belief χ. Specifically,

at each arrival or departure of the customer, Thompson sampling draws a random sample ξk for

each class k = 1 or 2. ξk takes value pb with probability χk and takes value pm with probability

1 − χk (pb > pm). The system manager chooses the class with the µk(ξkrh + (1 − ξk)rl) value to
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Figure 4: Performance of Whittle Index Scheduling Policies Compared to Becnchmark Policies

(a) Total Discounted Reward along Time (b) Total Discounted Reward Distribution

Note: In Figure 4(a), the trajectories of the optimal policy and the Whittle index scheduling policy closely
align, as their actions are nearly identical.

serve. For the ϵ-greedy algorithm, let r(χk) = χk(pbrh + (1− pb)rl) + (1− χk)(pmrh + (1− pm)rl)

denote the expected reward given the belief χk, with probability 1−ϵ, the algorithm serves the class

with the highest rk(χk)µk to serve, and with probability ϵ, the algorithm serves each nonempty

class with equal probability.

Figure 4 compares the performance of the Whittle index scheduling policy with benchmark

policies in terms of total discounted reward. In this analysis, arrival rates are set to λ1 = 1.5 and

λ2 = 2, while service rates are µ1 = 3 and µ2 = 4.1, ensuring a overall traffic intensity of the system

at ρ = 0.98. Figure 4(a) shows the average total discounted reward over time with a 95% confidence

intervals, highlighting that the Whittle index closely approximates the performance of the optimal

policy, while the performance of classical heuristic policies falls behind with a significant gap.

Figure 4(b) presents box plots of the total reward distribution, showing that the Whittle policy

achieves a reward distribution similar to the optimal policy with lower variability compared to

Thompson Sampling and ε-greedy.

Figure 5(a) illustrates the average improvement in the total discounted reward of all policies

compared to the lower bound at various discount factors (γ). In this analysis, the parameters

are the same as in the previous study except for the discount rates, where the traffic intensity of

the system is maintained at ρ = 0.98. We analyze discount factors ranging from 0.004 to 0.04,

corresponding to valuations where one unit of reward translates to 0.996 and 0.96 units of reward
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Figure 5: Reward Improvement at Different Discount Factor (γ) and Offerled Load (ρ)

(a) Reward Improvement with Discount Rates (b) Reward Improvement with Traffic Intensities

after one time period, respectively.

As shown in Figure 5(a), we observe that the Whittle index scheduling policy consistently out-

performs traditional learning strategies, such as the ϵ-greedy and Thompson Sampling algorithms,

while achieving near-optimal performance across all discount factors. Additionally, the performance

gap between the Whittle index scheduling policy and the classical learning policies widens as the

discount rate increases. These findings can be attributed to the adaptive and near-optimal nature

of the Whittle index scheduling policy. Whittle index scheduling policy facilitates faster learning of

the underlying reward structure by dynamically accounting for discount rates. Unlike ϵ-greedy and

Thompson Sampling algorithms, the Whittle index policy incorporates discount rates directly into

its formulation, maintaining near-optimal performance regardless of the discount rate. To illustrate

the faster learning provided by the Whittle index, consider the Thompson Sampling algorithm. Like

the Whittle index policy, Thompson Sampling eventually learns the ground truth and adheres to

the optimal action after sufficient learning. However , the better performance of the Whittle index

policy indicates its ability to learn the ground truth faster.

Figure 5(b) presents the average increase in the total discounted reward for all policies compared

to the lower bound at various levels of traffic intensity (ρ). For this study, the service rates increase,

while the arrival rates are the same as in the baseline study. Consequently, the system’s offered

load ρ = ρ1 + ρ2 spans values from {0.4, 0.5, . . . 1.2}. We specify that each class has an equal

offered load of ρ1 = ρ2 and the discount rate is consistently γ = 0.004 throughout this example. As

noted in earlier examples, the Whittle index scheduling policy consistently displays near-optimal
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performance in all traffic conditions. This robustness is due to the way that the Whittle index

accounts for changes in service rates and offered loads via its busy period component. In addition,

higher traffic intensities further highlight the advantages of the Whittle index scheduling policy.

Through the numerical studies, we also explore the impact of the service rate and rewards plays

in the queueing scheduling problem with learning. The rµ rule in the classical queueing scheduling

problem suggests that the priority rule depends only on the product of the reward r and the service

rate µ. However, in the learning problem, we have shown that for a class k, for a given product

rkµk in the ground truth, the Whittle index increases in µk; see Lemma 6 for details. While

the Whittle index policy adjusts for the change of the rµ compositions, the classical policies of

Thompson sampling and ϵ-greedy do not, i.e., for a given state, Thompson sampling and ϵ-greedy

policies have the same probability of serving a class k with the same probability regardless of the

rµ composition.

To explore the implications of this result, we keep the product rµ constant for a class of cus-

tomers and examine the performance of the policy in different compositions of r and µ. We increase

the service rate µ1 and decrease the portion of the high-reward customer of class 1 accordingly so

that the product r1µ1 is constant. Note that here the expected reward for class 1, in ground truth,

is defined by r1 = p1rh + (1 − p1)rl. To control for the impact of the traffic intensity so that the

load offered for class 1, ρ1 = 0.5 throughout all simulations, we increase the arrival rate of class

1, λ1, accordingly. In addition, all the parameters for class 2 customers remain unchanged. In

this study, regardless of the parameters of the change, given the ground truth, prioritizing class

1 generates the most total discounted rewards. Figure 6 illustrates the total discounted rewards

of different policies at varying discount rates as we simultaneously increase the value of µ1 and

decrease r1 at the same time. We observe that the Whittle index scheduling policy consistently

remains near-optimal, closely approaching the upper bound across all parameter configurations.

Although the total discounted rewards of the Thompson sampling and ϵ-greedy policies increase

with higher service rates, the performance gap between these policies and the Whittle index policy

widens as µ1 increases. In addition, the differences in policy performance are amplified by higher

discount factors, suggesting that most of the divergence occurs early in the service process when

policies are still learning the underlying reward structure.
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Figure 6: Total Discounted Rewards of Different Policies at Different r1µ1 compositions

The increasing performance advantage of the Whittle index scheduling policy over Thompson

sampling and ϵ-greedy policies can be explained by its dynamic adaptability and efficient learning

process. For any given state, the Whittle index policy adjusts to changes in the composition of

rµ by prioritizing class 1 more frequently as µ1 increases. In contrast, the Thompson sampling

and ϵ-greedy policies maintain fixed probabilities of serving each class in all states, regardless of

parameter changes. Moreover, when µ1 is higher, serving class 2 customers delays learning about

class 1 rewards because the time spent serving class 2 could have been used to exploit the higher

service rates of class 1. The Whittle index policy, by favoring class 1 in such scenarios, consistently

outperforms the other two policies. This can be attributed to the adaptability of the Whittle index

policy to different parameter setups, allowing it to capitalize on increased service rates for class 1

more effectively than Thompson sampling and ϵ-greedy policies.

6. Conclusion

In this paper, we formulate the queueing scheduling problem with Bayesian updating of the reward

parameters as an RMAB problem. Our analysis provides the corresponding Whittle index and

demonstrates that the scheduling policy given by the Whittle index is optimal in a specific case

and remains near optimal in general settings. We also provide numerical analysis on the robustness

of the Whittle index policy under varying conditions and assumptions. Conceptually, our paper

offers a framework for studying optimal Bayesian queueing scheduling problems with learning as-

pects. Practically, we provide a Whittle index scheduling policy whose computational complexity

grows linearly with the number of classes instead of exponentially, as in classical dynamic program-
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ming algorithms. This improvement in solution efficiency offers a feasible solution for real-world

applications.

Future work on learning in queueing could explore more complex queueing systems with learn-

ing of other types of information and the impact of customer behaviors. A service system with

customer abandonment is particularly interesting, as customer abandonment leads to both revenue

loss and loss of learning opportunities. Additionally, exploring optimal Bayesian scheduling policies

where the system manager learns both service rates and service rewards could extend insights for

data-driven decision making in learning-based queueing systems. Moreover, learning of customer

characteristics in a queueing network and the resulting routing problem provide another interesting

extension of our paper. One could investigate settings where services at different stations gener-

ate different rewards with respect to customer types, where rewards correlated are correlated, and

knowledge about customer is shared among stations. With active learning of the customer reward

parameters in a network, the system manager needs to decide the routing of the customer, that is,

the optimal order of customer visiting stations so that the total discounted reward is maximized.
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Online Appendix: Proofs

Proof of Lemma 1:

Proof. We construct an auxiliary MAB with K arms. Therefore, the state of the arm does not

change under continuation control. When the arm is frozen, the state of the arm k does not change

and no reward is collected. It is well known that the optimal policy is an index policy given by the

Gittins index (Gittins et al. 2011).

In general formulation, Gittins index, v(s), for a state s of an arm is defined as:

v(s) = sup
τ

E
[∑τ−1

t=0 αtrt(s) | s0 = s
]

E
[∑τ−1

t=0 αt | s0 = s
] , (14)

where τ is the stopping time (the decision epoch to stop exploring the current arm), s is the

state of the arm at the current time, α is the discount factor (0 < α < 1), rt(s) is the expected

reward to receive if the arm is active in state s at time t, E[·] denotes the expectation over the

stochastic process governing rewards and transitions, s0 = s representing the initial state of the

arm, and the supremum is taken over all possible stopping times τ . To verify that the index

specified in the equation (13) is the Gittins index for this auxiliary MAB, we show that the ex-

pectation over the stochastic process conditioning on the initial states E [· | s0 = s] is equivalent to

E
[
· | QA

k (0) = qk, X
A
k (0) = χk)

]
, and rt(s) corresponds to βµ̃kE[RA

k,t].

In the Gittins index formulation specified in Equation (14), before an arm achieves the stopping

time, it collects the reward assuming that the arm stays in the active mode. Thus, the stochastic

process, (QA
k (t), X

A
k (t) | QA

k (0) = qk, X
A
k (0) = χk), under policy π̃A, which always chooses active

action in all states, is equivalent to the stochastic process, (Qk(t), Xk(t) | Qk(0) = qk, Xk(0) = χk),

for t ≤ τ , before the stopping time τ . Therefore, the expectation over the stochastic process condi-

tioning on the initial states for the Gittins index: E [· | s0 = s] is E
[
· | QA

k (0) = qk, X
A
k (0) = χk)

]
.

By staying active in period t, the probability of seeing a service complete in the next period is

µ̃k. Should completion of the service occur, the reward to collect conditioning on the belief in the

period t is RA
k | XA

k (t) = RA
k,t. Taking into account the discount factor, rt(s) for the Gittins index

is βµ̃kE[RA
k,t] := βµ̃kE[Rk | Xk(t)]. Thus, the Gittins index of arm k of the auxiliary MAB in state
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(qk, χk), is given by: For qk ≥ 1 and χk ∈ Σk,

vk(qk, χk) = βµ̃k sup
1≤τ

E
[∑τ−1

t=0 βtE[RA
k,t] | QA

k (0) = qk, X
A
k (0) = χk)

]
E
[∑τ−1

t=0 βt | QA
k (0) = qk, X

A
k (0) = χk

] . (15)

Note that the reward sequences, RA
k,t, for t = 1, 2 . . ., are conditionally independent on the state

Xk(t). Using the law of iterated expectations, we can combine the expectation operations. Thus,

the Gittins index for the MAB problem is:

vk(qk, χk) = βµ̃k sup
1≤τ

E
[∑τ−1

t=0 βtRA
k,t | QA

k (0) = qk, X
A
k (0) = χk)

]
E
[∑τ−1

t=0 βt | QA
k (0) = qk, X

A
k (0) = χk

] , (16)

and vk(0, χk) = 0 for χk ∈ Σk.

Note that the arm k for the auxiliary MAB freezes when the queue is empty, that is, when

qk = 0, then (Qk(t+ 1), Xk(t+ 1)) = (0, χk). Therefore, the optimal stopping time is constrained

by the time when the queue is empty by construction, as continuation would only lower the index.

Thus, the optimal stopping time τ satisfies τ ≤ Bk(qk), where

Bk(qk) = inf
{
t ≥ 0 : QA

k (t) = 0 | QA
k (0) = qk

}
. (17)

Given that the optimal stopping time is less than B(qk), we can also write the Gittins index as:

βµ̃k sup
1≤τ≤Bk(qk)

E
[∑τ−1

t=0 βtRA
k,t | QA

k (0) = qk, X
A
k (0) = χk)

]
E
[∑τ−1

t=0 βt | QA
k (0) = qk, X

A
k (0) = χk

] , (18)

which is the Whittle index we showed in Theorem 1

Proof of Corollary 1:

Proof. The proof follows directly from Lemma 2.2 in Gittins et al. (2011).

Proof of Lemma 2:

Proof. The proof follows that for each fixed sample path, Bk(qk) increases in qk. Thus, the function

vk(qk, χk) increases in qk.

Proof of Theorem 1:
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Proof. We show that the arm k is indexable and vk(qk, χk) defined in Equation (13) is the Whittle

index of the restless arm k defined in Definition 2 by showing that the following policy is optimal

for the restless arm k defined in Equation (7):

π̃(qk, χk, wk) =



A (Active), if vk(qk, χk) > wk

P (Passive), if vk(qk, χk) < wk

Indifferent between A and P , if vk(qk, χk) = wk.

We show that the optimality of the policy π̃ for the restless arm k implies indexability and identifies

the Whittle index to be vk(qk, χk), respectively:

i.) If policy π̃ is optimal for the restless arm k defined in Equation (7), then the arm k is indexable:

By Equation (10) and Definition 2, the stopping sets are the set of states where the passive

action is optimal:

Sk(wk) =
{
(qk, χk) ∈ Z+ × Σk : JP

k (qk, χk, wk) ≥ JA
k (qk, χk, wk)

}
(19)

If the policy π̃, is optimal, then the stopping set of the restless arm k is defined by the by the

states where the index vk(qk, ak) less that passive reward wk, that is

Sk(wk) ≡ {(qk, χk) ∈ Z+ × Σk : (qk, χk) ∈ Z+ × Σk : vk(qk, χk) ≤ wk} (20)

To prove the indexability of the restless arm k, we show that the stopping set is increasing in

the passive reward wk. Let w
′
k ≥ wk be another passive reward, we have

{(qk, χk) ∈ Z+ × Σk : vk(qk, χk) ≤ wk} ⊆
{
(qk, χk) ∈ Z+ × Σk : vk(qk, χk) ≤ w′

k

}
,

which satisfies the monotonicity needed for the indexability stated in definition (1).

ii.) If policy π̃ is optimal for the restless arm k defined in Equation (7), then vk(qk, χk) is the

Whittle index for arm k:

For the policy π̃ to be optimal for a single arm problem defined by Equation (7), the following

statements hold for the index vk(qk, χk):

(a) If vk(qk, χk) > wk, J
A
k (qk, χk, wk) > JP

k (qk, χk, wk).

(b) If vk(qk, χk) < wk, J
A
k (qk, χk, wk) < JP

k (qk, χk, wk).
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(c) If vk(qk, χk) = wk, J
A
k (qk, χk, wk) = JP

k (qk, χk, wk).

By definition (2), the Whittle index for a state is the minimum passive reward for the restless

arm k to take the passive reward at that state. If the above three statements hold, we can

establish that vk(qk, χk) is such a minimum reward satisfying Definition 2. To see this, note

that with a passive reward of wk = vk(qk, χk), the arm k is indifferent between active and

passive action, with any passive reward lower than vk(qk, χk), the arm k should be active, and

with any reward higher than vk(qk, χk), the arm k should remain passive.

Now, it suffices to show that the policy π̃ is optimal for the restless arm k defined in Equa-

tion (7).

Because for any wk < 0, JA
k (qk, χk, wk) > JP

k (qk, χk, wk), it suffices to consider the cases

where wk ≥ 0. Moreover, we can see that for any wk ≥ 0, JA
k (0, χk, wk) ≤ JP

k (0, χk, wk) and

vk(0, χk) = 0 ≤ wk. Thus, for any wk ≥ 0, it suffices to show that the policy π̃ is optimal in cases

of qk > 0.

For the case of qk > 0, we show that the policy π̃ is optimal for the restless arm k using an

interchange argument with logic similar to the proof of Theorem 2.1 in Gittins et al. (2011). To

facilitate the argument, we assume that the realization of the events, i.e., the realized rewards and

the arrival and service completion events, are associated with the number of periods that the system

is in either mode in any fixed sample path. This assumption leads to two specific implications:

1. For a fixed sample path, any two policies see the same event on the same order of ac-

tive/passive periods. In explain, if one policy sees a service completion upon the nth active

period, then the event on nth active period of the other policy will also be a service completion.

2. For a fixed sample path, the server stays in the active mode for t1 periods and in the passive

mode for t2 periods before hitting qk = 0, then the system state is the same at the beginning

of period t1 + t2 + 1, independent of the sequence of customer service. For any two policies,

only the first t1 + t2 periods differ. Suppose that the queue lengths are positive in the first

t1 + t2 periods under both policies. If the system stays in active mode for t1 periods and

in passive mode for t2 periods under both policies, then the two policies produce the same

sample paths after the first t1 + t2 periods.
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The structure of our proof combines an interchange argument with induction, outlined as follows.

Let Πi denote the set of policies that deviates from the proposed policy π̃ for at most i periods

where i ≥ 1. We first show that if policies are restricted to Π1, then there is no state of the

restless bandit in which the single option of deviating from policy π̃ should be taken. Note that

π̃ ⊆ Π1 ⊆ Π2 . . . , by an inductive argument, we may conclude that the policy π̃ is optimal within

the class Πi for all i ≥ 1 (i.e., from the above it follows that the last option to deviate need not

be used, and so we may restrict our attention to Πi−1, and inductively to Πi−2, . . . ,Π0, where

Π0 = {π̃}.)

We use an interchange argument to show that if the policies are restricted to the set Π1, then it

is suboptimal to deviate from policy π∗. Consider a policy π ∈ Π1 that deviates exactly once from

the policy π̃. Without loss of generality, we can assume that π deviates in the first period. We

show that by constructing a policy π′ that interchanges the order of active and passive periods in

policy π, the total reward collected under π′ is strictly greater than that under π. Ultimately, under

such construction, π′ corresponds to the policy π̃ for π ∈ Π1, therefore, it is strictly suboptimal to

deviate from π̃.

For policy π, let (qk, χk) denote the initial state of the system and (Qπ
k(t), X

π
k (t)) denote the

state of the system at the end of the period t under policy π. By the index value vk(qk, χk), of

different states, we divide our proof into three cases:

1. Case: vk(qk, χk) < wk. In this case, policy π̃ chooses the passive mode in period 0, and

stays in the active mode until the index of the state is lower than wk. Under policy π, the

arm k stays in the active mode in period 0 and follows the policy π̃. Let the stopping time

σ ≥ 2 denote the period when the system switches to the passive mode, i.e., σ = inf{σ :

vk(Q
π(σ), Xπ(σ)) ≤ wk}. Note that σ ≤ Bk(qk) because vk(0, χk) = 0 ≤ wk for all χk ∈ Σk.

By interchanging the passive and the active time period, we construct π′ which stays in

passive mode in period 0 and then switches to the active mode in periods 2, 3, . . . , σ + 1.

Then, policy π′ follows policy π̃ afterwards.

Note thatQπ′
k (1) ≥ qk because under period π′, period 0 can only see an arrival event or remain

unchanged as the restless arm k stayed in the passive mode. Thus, the queue is nonempty

in periods 2, . . . , σ + 1 under policy π′ under the interchange assumption. Furthermore, the
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system dynamics are identical after period σ + 1 under the two policies by the interchange

assumption stated at the beginning of the proof. Therefore, the rewards under the two

policies, π and π′, only differ in the first σ + 1 periods.

Let Rπ
k,t and Rπ′

k,t denote the conditional reward based on the manager’s belief regarding the

reward of class k customers up to time t under policies π and π′, respectively. We formally

define these conditional rewards as Rπ
k,t := Rk | Xπ

k (t), and Rπ′
k,t := Rk | Xπ′

k (t), then the

following holds:

vk(qk, χk) ≥ βµ̃k

E
[∑σ−1

t=0 βtRπ
k,t | Qπ

k(0) = qk, X
π
k (0) = χk

]
E
[∑σ−1

t=1 βt | Qπ
k(0) = qk, X

π
k (0) = χk

]
= βµ̃k

E
[∑σ

t=1 β
t−1Rπ′

k,t | Qπ′
k (0) = qk, X

π′
k (0) = χk

]
E
[∑σ

t=1 β
t−1 | Qπ′

k (0) = qk, X
π′
k (0) = χk

] .

The inequality follows from Equation (13) and the equality follows from the interchange

assumption. Note that the sum of the discounted time E
[∑σ

t=1 β
t−1

]
can be expressed as

E[1−βσ ]
1−β by the geometric sum formula. Therefore, we have:

vk(qk, χk) ≥ βµ̃k

(1− β)E
[∑σ−1

t=0 βtRπ
k,t | Qπ

k(0) = qk, X
π
k (0) = χk

]
E
[
1− βσ | Qπ

k(0) = qk, X
π
k (0) = χk

]
= βµ̃k

E
[
(1− β)

∑σ
t=1 β

t−1Rπ′
k,t | Qπ′

k (0) = qk, X
π′
k (0) = χk

]
E
[
1− βσ | Qπ′

k (0) = qk, X
π′
k (0) = χk

] .

Therefore, it follows from the assumption wk > vk(qk, χk) that the following holds:

wk > βµ̃k

(1− β)E
[∑σ−1

t=0 βtRπ
k,t | Qπ

k(0) = qk, X
π
k (0) = χk

]
E
[
1− βσ | Qπ

k(0) = qk, X
π
k (0) = χk

] .

Simplify the inequality, we have:

wk + βµ̃kE

[
σ∑

t=1

βtRπ′
k,t | Qπ′

k (0) = qk, X
π′
k (0) = χk

]

> βµ̃kE

[
σ−1∑
t=0

βtRπ
k,t | Qπ

k(0) = qk, X
π
k (0) = χk

]
+ E[βσ | Qπ

k(0) = qk, X
π
k (0) = χk]wk.

Note that the left-hand side of the inequality is the expected discounted reward in the first

σ+1 periods under policy π′, while the right-hand side is the expected discounted reward in

the first σ+1 periods under policy π. Note that π′ is also in Π1 because vk(Q
π′
k (t), Xπ′

k (t)) ≥

vk(Q
π
k(t − 1), Xπ

k (t − 1)) ≥ wk for t = 1, . . . , σ by the definition of stopping time σ and the
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interchange assumption. Thus, in this case, if π deviates from policy π̃ in period 1, there

exists a policy π′ ∈ Π1 that strictly improves policy π. Furthermore, note that policy π′ in

effect is the policy π̃ as it stays passive in the first period where vk(qk, χk) < wk and stay

active until σ, where vk(Q
π(σ), Xπ(σ)) ≤ wk.

2. Case vk(qk, χk) > wk. In this case, under policy π̃, the restless arm k stays in active mode

until τ , where vk(Q
π̃(τ), X π̃(τ)) ≤ wk. Deviating from policy π̃ in the first period, under

policy π, the restless arm k stays in the passive mode in period 1 and stops until σ, where

vk(Q
π(σ), Xπ(σ)) ≤ wk.

Under policy π, we have that Qπ
k(1) ≥ qk and X̃π

k (1) = χk since policy π stayed passive in the

first period. Thus, it follows from (ii) of Corollary 1 that vk(Q̃
π
k(1), X̃

π
k (1)) > wk. Thus, the

system switches to the active mode in period 2. The system stays in the active mode for σ

periods until the index of the state falls below wk. Let δ = Q̃π
k(1)− qk denote the number of

new arrivals in the first period. In addition, let σ denote the stopping time that stops when

the index of vk(Q
π
k(t)− δ,Xπ

k (t)) falls below vk(qk, χk). Thus, it follows from (ii) of Corollary

1 and Lemma 2 that τ ≤ σ almost surely. Therefore, policy π can stay active for at least τ

periods.

We construct a policy π′ that stays active in periods 0, . . . , τ − 1 and stays in the passive

mode in period τ . Note that the system state under the two policies is the same after period

τ . Thus, policy π′ acts the same with policy π after period τ . Note that by (ii) of Corollary

1, the stopping time τ − 1 attains vk(qk, χk).

Similar to the previous case, let Rπ
k,t and Rπ′

k,t denote the conditional reward based on the

manager’s belief regarding the reward of class k customers up to time t under policies π and

π′, respectively. The following holds by the case assumption, vk(qk, χk) > wk, attainability

of τ − 1 on vk(qk, χk), and the transformation of the geometric sum similar in the previous

case:

vk(qk, χk) = βµ̃k

(1− β)E
[∑τ−1

t=0 βtRπ
k,t | Qπ

k(0) = qk, X
π
k (0) = χk

]
E
[
1− βτ | Qπ

k(0) = qk, X
π
k (0) = χk

] > wk.

Simplify the expression, we have:
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βµ̃kE

[
τ−1∑
t=0

βtRπ′
k,t | Qπ′

k (0) = qk, X
π′
k (0) = χk

]
+ E

[
βτ | Qπ′

k (0) = qk, X
π′
k (0) = χk

]
wk

> wk + βµ̃kE

[
τ∑

t=1

βtRπ
k,t | Qπ

k(0) = qk, X
π
k (0) = χk

]
.

Note that the left-hand side is the expected discounted payoff of the first τ periods under

policy π′, whereas the right-hand side is that under policy π. Note that π′ is also in set Π1.

Note that π′ is also in Π1 because π′ doesn’t not deviate from policy π̃. Thus, in this case,

if π deviates from policy π̃ in period 1, there exists a policy π′ ∈ Π1 that strictly improves

policy π. Furthermore, note that policy π′ in effect is the policy π̃ as it stays active until τ ,

where vk(Q
π(τ), Xπ(τ)) ≤ wk.

3. Case vk(qk, χk) = wk. In this case, it is indifferent to stay in the active or passive modes.

First consider the case when the system is in the active mode. The server switches to the

passive mode only when its index is less than or equal to wk. Let τ be the time when the

server switches to class 1. It follows from (ii) of Corollary 1 that τ attains vk(qk, χk). Thus,

the total expected discounted reward in first τ periods is wk
∑τ

t=0 βt by the definition of

vk(qk, χk). Now consider a policy that the system stays in the passive mode in period 1 and

switches to the active mode in periods 2, . . . , τ . It is easy to see that the alternative policy

also yields a total expected discounted reward of wk
∑τ

t=0 βt in first τ period. The sample

paths of the two policies are the same after period τ . Thus, there is no difference with the

policy of staying in the active mode in period 1 and the policy that staying in the passive

mode in period 1 and then switches to the active mode. An induction argument can take care

of the case when the system stays in the passive mode for multiple periods before switching

to the active mode.

As a conclusion, we have shown that if the policies are restricted to the set Π1, then it is suboptimal

to deviate from the policy π̃. Using an inductive argument, we can show that if policies are restricted

to the set Πk, it is optimal to consider only policies in the set Πk−1. Thus, we conclude that policy

π̃ is optimal among the set of policies Πi for all integers i ≥ 1.

Establishing that π̃, the policy determined by vk(qk, χk), is optimal for all qk, χk ∈ Z+ × Σk

completes our proof. This conclusion is based on our explanation earlier in the proof, where we
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show that the optimality of π̃ directly implies that the restless arm k is indexable and the function

vk(qk, χk) serves as the Whittle index for arm k.

Proof of Lemma 3:

Proof. It can be viewed as a special case of Theorem 1 when the rewards are i.i.d. and has a mean

of r1. If the rewards are i.i.d., for any stopping time that satisfies 1 ≤ τ ≤ B1(q) almost surely, the

following holds:

βµ̃1E
[∑τ−1

t=0 βtR1

]
E
[∑τ−1

t=0 βt
] =

βµ̃1r1E
[∑τ−1

t=0 βt
]

E
[∑τ−1

t=0 βt
] = βµ̃1r1.

Class 1 can also be viewed as a special case of Ansell et al. (2003). The result is consistent with

the analysis there.

Proof of Theorem 2:

Proof. The proof is very similar to that of Theorem 1.

If q1 = 0, the optimal action is to serve the class 2 customer because we assume a preemptive

discipline. Similarly, if q2 = 0, the optimal action is to serve a class 1 customer. Therefore, it

suffices to consider the cases q1 > 0 and q2 > 0, for which the index v1(q1) = βµ̃1r1.

In the cases q1 > 0 and q2 > 0, intuitively, the scheduling problem with one known-reward

class and one unknown-reward class is equivalent to the single restless arm problem defined in

Equation (7) with passive reward wk = βµ̃1r1 = v1(q1) for q1 > 0. To see the similarities, in each

period, the manager chooses an active action by serving a class 2 customer and earns a random

reward and update belief χ, or chooses a passive action by serving class 1 customer and collect

a known reward of βµ̃1r1. As we have shown in Theorem 1, the optimal policy is given by the

relationship between v1(q1) and v2(q2, χ).

We call the proposed policy stated in the theorem the non-idling index policy. To facilitate the

proof, let Πi denote the set of policies that deviates from the proposed index policy in i periods at

most for k ≥ 1. Thus, the policy of non-idling index is set in Πi for all i ≥ 1. We follow a similar

induction argument to show the optimality of the proposed index policy within Πi. Now, let us

consider a policy π ∈ Π1 that deviates from the index policy once. Without loss of generality, we

can assume that π deviates in the first period. Let (q1, q2, χ) denote the initial state of the system.
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We consider two cases: v2(q2, χ) < v1(q1) and v2(q2, χ) > v1(q1). Using similar logic in the proof

of Theorem 1, we show that the Whittle scheduling policy is optimal in 3 cases:

1. Case 1: v2(q2, χ) < v1(q1). In this case, under policy π, the server serves a class 2 customer

or stays idle in period 1. We first discuss the case where q2 ≥ 1 and the server starts serving

a class 2 customer. This case is the same as the case where vk(qk, χk) < wk in the proof of

Theorem 1, so we omit the analysis here.

Next, we consider the scenario in which the policy π sets the server idle in period 1. Then,

according to policy π, the server serves class 2 in periods 2, . . . , σ to v2(Q
π
2 (σ + 1), Xπ(σ +

1)) < µ1r1 for the first time and then starts serving class 1. The stopping time σ = 1 if

v2(Q
π
2 (2), X

π(2)) < µ1r1. In this case, the server starts serving class 1 immediately after

idling in period 1. We consider a policy π′ that serves class 1 in period 1, follows policy π in

periods 2, . . . , σ, and then idle the server in period σ + 1. The states of the system are the

same under both policies in period σ + 2 and afterward. Thus, we can let policy π′ follow

policy π after period σ + 1. The policy π′ yields a strictly higher pay-off than the policy π.

2. Case 2: v2(q2, χ) > v1(q1). The server either servers a customer of class 1 or stays idle in

period 1 under policy π. The argument of staying idle in period 1 is similar to the previous

case discussed. Thus, we omit it and only consider the case when π serves class 1 in period

1. In this case, q1 ≥ 1 and v1(q1) = µ1r1. We can follow a similar argument to that of Case

2 of the proof of Theorem 1.

3. Case 3: v2(q2, χ) = v1(q1). We can follow a similar argument to that of Case 3 of the proof

of Theorem 1 to see that either policy yields a reward of βµ̃1r1
∑τ

t=0 βt within τ .

Proof of Lemma 4:

Proof. Denote by χ and χ, respectively, the Bayesian posteriors corresponding to a prior χ depend-

ing on whether the system manager receives a high or low reward upon service completion. They
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satisfy

χ = g(χ, rh) =
χpb

χpb + (1− χ)pm
and

χ = g(χ, rl) =
χ(1− pb)

χ(1− pb) + (1− χ)(1− pm)

First, notice that both posterior believes χ and χ increase in initial belief, χ. In addition, the

expected reward r̄2(χ) also increases in χ. Since the posterior believes and the expected reward

both increase strictly in χ, their compositions, the posterior expected rewards, r(χ) and r(χ)

also increase in χ. Thus, for any stopping time 1 ≤ σ ≤ B2(q2) a.s., the following holds: For

0 ≤ χ′
2 ≤ χ2 ≤ 1,

E
[
βµ̃2

∑σ−1
t=0 βtR2,t | X̃(0) = χ′

2

]
E
[∑σ−1

t=0 βt
] ≤

βµ̃2E
[∑σ−1

t=1 βt−1R2,t | X̃(0) = χ2

]
E
[∑σ−1

t=0 βt
] ≤ v2(q2, χ2).

Taking the supremum on all possible stopping times, we obtain v2(q2, χ
′
2) ≤ v2(q2, χ2).

Note that σ = 2 is a stopping time if q2 ≥ 1 because B2(q2) ≥ 2 for all q2 ≥ 1. Thus, the

following holds: For q2 ≥ 1 and χ2 ∈ [0, 1],

v2(q2, χ2) ≥ βµ̃2E
[
r̄2(X̃(0))

]
= βµ̃2r̄2(χ2).

The inequality v2(q, χ) ≤ v̄2(χ2) holds as any stopping satisfying 1 ≤ σ ≤ B2(q)2 satisfies 1 ≤ σ.

Proof of Lemma 5:

Proof. Whittle index is specified by the following Equation:

vk(qk, χk) = βµ̃k sup
1≤τ≤a.s.Bk(qk)

E
[∑τ−1

t=0 βtRA
k,t | QA

k (0) = qk, X
A
k (0) = χk)

]
E
[∑τ−1

t=0 βt
] , (21)

where RA
k,t is the expected reward of the class k conditioning on the belief state XA

k (t). In the

setting of our specific reward case, where the parameter takes value pb, pm, rh and rl, we have

RA
k,t = rh

(
XA

k (t)pb +
(
1−XA

k (t)
)
pm

)
+ rl

(
XA

k (t) (1− pb) +
(
1−XA

k (t)
)
(1− pm)

)
. (22)

Let P (XA
k (t)) denote the value XA

k (t)pb +
(
1−XA

k (t)
)
pm, we have

RA
k,t = rhP (XA

k (t)) + rl(1− P (XA
k (t))). (23)
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Plugging it into the equation (21), we have

vk(qk, χk) = βµ̃k sup
1≤τ≤a.s.Bk(qk)

E
[∑τ−1

t=0 βt
(
P (XA

k (t)) + (1− P (XA
k (t)))

)
| QA

k (0) = qk, X
A
k (0) = χk)

]
E
[∑τ−1

t=0 βt
] .

(24)

Suppose that we transform the rewards for both classes with the linear operation f(x) = ax + b,

such that r′h = arh + b and r′l = arl + b. Let vk(qk, χk | r′h, r′l) denote the Whittle index after the

linear transformation, we have

vk(qk, χk | r′h, r′l)

= βµ̃k sup
1≤τ≤a.s.Bk(qk)

E
[∑τ−1

t=0 βt
(
(arh + b)P (XA

k (t)) + (arl + b)(1− P (XA
k (t)))

)
| QA

k (0) = qk, X
A
k (0) = χk)

]
E
[∑τ−1

t=0 βt
]

= βµ̃k sup
1≤τ≤a.s.Bk(qk)

aE
[∑τ−1

t=0 βt
(
rhP (XA

k (t)) + rl(1− P (XA
k (t))) + b

a

)
| QA

k (0) = qk, X
A
k (0) = χk)

]
E
[∑τ−1

t=0 βt
] .

= βµ̃k sup
1≤τ≤a.s.Bk(qk)

aE
[∑τ−1

t=0 βt
(
rhP (XA

k (t)) + rl(1− P (XA
k (t)))

)
| QA

k (0) = qk, X
A
k (0) = χk)

]
E
[∑τ−1

t=0 βt
] + a

E
[∑τ−1

t=0 βt b
a

]
E
[∑τ−1

t=0 βt
] .

= aβµ̃k sup
1≤τ≤a.s.Bk(qk)

E
[∑τ−1

t=0 βt
(
rhP (XA

k (t)) + rl(1− P (XA
k (t)))

)
| QA

k (0) = qk, X
A
k (0) = χk)

]
E
[∑τ−1

t=0 βt
] + b,

(25)

which is equivalent to applying the linear transformation, f(x) = ax + b on the original Whittle

index with reward rh and rl.

Proof of Lemma 6:

Proof. Suppose that we have a system with two classes of customer, class 1 and class 2, whose

rewards are unknown. We assume that the ground truth is that class 1 generates a higher expected

reward, that is, the portion of the high-reward customers of class 1 is ph and class 2 generates a

lower expected reward, that is, the portion of the high-reward customer of class 2 is pl. Given

the ground truth, the expected reward for each class 1 customer is a high reward, denoted by

H = ph(rh − rl) + rl and for each class 2 customer is a low reward denote by L = pl(rh − rl) + rl

for the class 2 customer. Note that these are ground truth information that the system manager

does not know.

In the the ground truth, we fix the product of r1µ1 and r2µ2. Additionally, we fix r2 = L and

µ2, exactly the same, which means that the customer characteristics of the class 2 customer remain

unchanged. It is important to note that the system manager knows the values of H, L, µ1, and
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µ2, as well as any changes to these values. The only information for the manager to learn is which

class generates the higher expected reward, H, and which generates the lower expected reward, L.

Now, if we change the composition r1µ1 in the truth of the ground by increasing µ1 and decreasing

r1 at the same time so that the r1µ1 product is the same, we want to show that the Whittle index

for class 1 will increase and thus more likely to recommend serving class 1 customer.

To show this, we need to go back to the definition of the Whittle index. In general, the Whittle

index takes the form of following:

vk(qk, χk) = βµ̃k sup
1≤τ≤Bk(qk)

E
[∑τ−1

t=0 βtRA
k | QA

k (0) = qk, X
A
k (0) = χk)

]
E
[∑τ−1

t=0 βt
] , (26)

In the single server queue scheduling problem with Bernoulli-Bernoulli prior-posterior structure,

the state of the system for each class is characterized by (qk, χk)—the length of the queue for that

class and the probability that the manager believes that the reward for that class belongs to a

optimistic scenario. The Whittle index takes the following form:

vk(qk, χk) = βµ̃k sup
1≤τ≤Bk(qk)

E
[∑τ−1

t=0 βt

(
χkH + (1− χk)L)

)
| QA

k (0) = qk, X
A
k (0) = χk)

]
E
[∑τ−1

t=0 βt
] . (27)

Suppose that we increase µ1 by a, for some a > 1, to keep the r1µ1 = Hµ1 product the same, we

need to decrease H by 1
a . Plugging this into the Whittle index, we have

v′1(q1, χ1) = βaµ̃1 sup
1≤τ≤B1(q1)

E
[∑τ−1

t=0 βt

(
χ1

1
aH + (1− χ1)L

)
| QA

1 (0) = q1, X
A
k (0) = χ1)

]
E
[∑τ−1

t=0 βt
] . (28)

Since we fix ρ1, the busy period (for the uniformized queueing system) has the same distribution

before and after changing the composition of r1µ1. This allows us to intuitively show the difference

before after the composition change:
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v′1(q1, χ1)− v1(q1, χ1) =

βaµ̃1 sup
1≤τ≤B1(q1)

E
[∑τ−1

t=0 βt

(
χ1

1
aH + (1− χ1)L)

)
| QA

1 (0) = q1, X
A
1 (0) = χ1)

]
E
[∑τ−1

t=0 βt
]

− βµ̃1 sup
1≤τ≤B1(q1)

E
[∑τ−1

t=0 βt

(
χ1H + (1− χ1)L)

)
| QA

1 (0) = q1, X
A
1 (0) = χ1)

]
E
[∑τ−1

t=0 βt
]

= βµ̃1 sup
1≤τ≤B1(q1)

E
[∑τ−1

t=0 βt

(
χ1H + a(1− χ1)L)

)
| QA

1 (0) = q1, X
A
1 (0) = χ1)

]
E
[∑τ−1

t=0 βt
]

− βµ̃1 sup
1≤τ≤B1(q1)

E
[∑τ−1

t=0 βt

(
χ1H + (1− χ1)L)

)
| QA

1 (0) = q1, X
A
1 (0) = χ1)

]
E
[∑τ−1

t=0 βt
]

= βµ̃1 sup
1≤τ≤B1(q1)

E
[∑τ−1

t=0 βt

(
(a− 1)(1− χ1)L)

)
| QA

1 (0) = q1, X
A
1 (0) = χ1)

]
E
[∑τ−1

t=0 βt
]

> 0.

(29)

The inutition is that the µ1 term on the outside increased by a factor of a, the term inside

decreased less because it is weighted by the term χ1, therefore, the overall index value increases

strictly for any χ1 > 0. The increase of µ1 affects the Whittle index linearly; however, the reward

affects the Whittle index sub-linearly because it is weighted by the belief. Thinking along this line,

we can show that this change only reduces the Whittle index for class 2 customers, making serving

class 1 customers more favorable:

v2(q2, χ2) = βµ̃2 sup
1≤τ≤B2(q2)

E
[∑τ−1

t=0 βt

(
χ2H + (1− χ2)L)

)
| QA

k (0) = q2, X
A
k (0) = χ2)

]
E
[∑τ−1

t=0 βt
] ,

v′2(q2, χ2) = βµ̃2 sup
1≤τ≤B2(q2)

E
[∑τ−1

t=0 βt

(
χ2

1
aH + (1− χ2)L)

)
| QA

2 (0) = q2, X
A
2 (0) = χ2)

]
E
[∑τ−1

t=0 βt
] ,

(30)

where v2(q2, χ2) > v′2(q2, χ2).

Therefore, since v′1(q1, q2) > v′1(q1, q2) and v′2(q2, χ2) < v2(q2, χ2), we can conclude that the

decrease in H and the increase in µ1 strictly increase the likelihood that the Whittle index policy

recommends serving the class 1 customer. The intuition is that the service rate is a common

47



knowledge whose increase will always be given full weight. However, the changes in ph will be

weighted by belief.
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