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Problem Definition: Many shared resources, such as hotel rooms or rental cars, require cleaning, charging,
or some other operation to “turn around” the resources between successive customer uses. We study staffing
and shift planning decisions for the turnaround service capacity in order to minimize the sum of customer
waiting and staffing costs. Random customer departures, random customer arrivals, and worker shifts with
breaks add to the managerial challenge.
Methodology/Results: Using the frameworks of diminishing return submodularity and M-convexity, we
demonstrate analytical properties for capacity decisions in three staffing scenarios, including our primary
model that focuses on shift planning. We propose a solution heuristic that efficiently provides near-optimal
solutions. We illustrate the value of our model for hotel housekeeping operations using data from a large
city-center hotel. Reallocating some room attendants to different shift start times, especially later in the day
compared to current practice, can effectively eliminate guest waiting after the posted check-in time.
Managerial Implications: Hotels can reduce room attendant idleness and room readiness issues by de-
parting from the common industry practice of all workers starting at 8:00 am. Simply having two shift start
times in the morning may virtually eliminate waiting and help in recruiting and retaining workers.

Key words : Staffing; service operations; hotel housekeeping; discrete convexity; diminishing return
submodularity

1. Introduction
Some service systems include two types of resources: physical assets used by customers and servers

that “turn around” those assets after use to prepare them for the next customer. Hotel rooms,

hospital beds, and rental cars may require cleaning, recharging, or some other form of servicing

between successive customer uses. In these settings, serving customers requires managing both the

asset rented to customers and the service capacity to restore the asset to a serviceable state amid

uncertainty about customer arrival and departure times. As one prominent example, hotels rely on

their housekeeping workforce to clean rooms between and during guest stays. This labor-intensive

operation is critical to avoid the service failure of not having a room ready when promised. In this
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paper, we study shift planning and other staffing decisions for the workforce that turns around a
resource between customer usage intervals.

While we focus on our model’s value for hotel housekeeping, additional applications to which our
model is relevant include cleaning operations for rental cars, planes, and hospital beds, as well as
charging operations for rented resources like electric vehicles. With the increasing adoption of electric
vehicles, car rental companies must choose the charging capacity at their locations in a way that
balances the cost of charging stations and the cost of customer waiting (Naughton 2021). For hospital
emergency departments, studies such as Pellicone and Martocci (2006) and Patel et al. (2014) have
connected the management of housekeepers and bed cleaning processes with admission delays.

Through modeling flows of departing and arriving customers over a finite horizon, our model cap-
tures the key trade-off between staffing costs and wait time issues for arriving customers caused by
resources not being ready. For hotels, Kandampully and Suhartanto (2003) report that the perfor-
mance of the housekeeping department, including the responsiveness of the housekeeping staff and
room cleanliness, is deemed as the most significant factor for brand image and customer satisfaction.
The explicit cost associated with guest waiting mostly appears to be compensation paid to guests
who experienced waiting. Anecdotally, a room manager of a large center-city hotel reported to us that
the hotel’s standard practice was to offer a $50 food and beverage credit if a room was not available
for a guest upon arrival after the stated check-in time. They increased compensation of one-half that
day’s room rate for more significant delays or other special circumstances with guests. Many of these
guests came to the hotel to attend weddings and related events; a delay in room readiness often
meant that the guest had to change attire in hotel restrooms rather than the guest’s room.

For the hotel industry, emerging trends in guest stay patterns underscore the importance of models
to provide decision support for housekeeping operations. The major hotel brands, including Marriott,
Hilton, and IHG, have offered various types of flexible check-in and check-out policies. Some offer
this as a guaranteed amenity for loyalty program members, and some sell flexible stay policies as
an opportunity to increase revenue. Hotels may also make flexible check-in and check-out times an
explicit benefit: The Peninsula Hong Kong offers the “Peninsula Time” program for guests to check
in as early as 6 am and check out as late as 10 pm at no extra charge (Eaton 2020). The American
Express Fine Hotels + Resorts program guarantees a 4:00 pm check-out and offers a check-in at noon
based on availability; one general manager reported to the authors that approximately 10% of her
hotel’s guests book through this program, which can induce significant challenges in room operations.
The owners of the TWA Hotel, which opened at Kennedy Airport in New York to much acclaim
in 2019, announced a target of 200% occupancy — i.e., two different guests checking into and out
of each room each day — to be achieved by offering short stays to airport travelers (Morris 2019).
Other hotels, including some luxury resorts, simply offer early check-in and late check-out based
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on availability. An operations executive at a luxury resort that attracts visitors from around the
world reported to us that many guests expect to have a room ready upon their arrival, regardless of
posted check-in times. A deeper understanding of this operation can also lead to solutions to staffing
shortages and enable alternate stay models, such as daytime stays, late check-outs, or early check-ins.

Regardless of whether a hotel uses innovative or conventional stay policies, our work identifies
human resources strategies that can be helpful to a hotel struggling to find workers. We address a
fundamental job design question — shift planning — for the more than 355,000 people who work
as housekeepers in the hospitality industry of the United States hospitality industry (United States
Bureau of Labor Statistics 2020). Speaking about the tight labor market for hotel room attendants,
one general manager said, “Everyone I speak to in the industry is having trouble getting housekeeping
staffed. It’s always been one of the hardest jobs to fill, and harder than ever now (Weed 2019).” The
trend of staffing shortages has continued in the post-pandemic environment: Total compensation paid
by hotels has increased by more than 20% from 2019 to 2024, even though employment in the sector
has fallen by roughly 9% (Feuer 2024). Consultants, general managers, and even one hotel company
CEO have each described to us a hypothesis that devotion to a strict 8 am shift start time for nearly
all room attendants limits the ability of hotels to recruit and retain workers. In the absence of models
to evaluate staffing decisions, managers may be hesitant to deviate from industry staffing conventions.
Our model helps managers evaluate different staffing policies, enabling new strategies and supporting
optimization efforts. In particular, using data from a large city-center hotel, we validate the strategy
of allowing some workers to start later in the morning, which could help address staffing shortages.
This strategy fits into a broader approach that McKinsey has described as “gigs go internal,” which
is “the use of internal talent in a ‘gig’ manner (Gupta et al. 2021).” The Wall Street Journal also
reports an increasing trend of allowing manufacturing, warehouse, and hospitality workers to set their
own shifts (Hufford 2022).

We present a discrete-time stochastic model of the staffing decisions, especially the shift construc-
tion decisions, for a service system with a workforce to turn around resources between customer
uses. The objective of our model is to minimize the combined cost of staffing costs and guest waiting
costs. Sample-path methods enable us to provide analytical results using diminishing return (DR-
)submodularity and M♮-convexity for general departure and arrival processes. We make the following
contributions:

1. Model and framework. We are the first to model staffing and shift construction decisions for
turnaround operations. The two types of resources — assets used by customers and servers to turn
them around — differentiate our model from many other queueing systems. Constraints on the
availability of assets to be turned around influence server capacity planning, and the optimal strategy
may be to allocate capacity in advance of demand rather than to match demand.
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2. Methodology and structural results. We are among the first to identify DR-submodularity and
M♮-convexity in service capacity planning problems. We are also the first to show M♮-convexity in
an operations context by applying the local exchange axioms of Murota and Shioura (2018) to one
staffing scenario we study. These approaches show promise for establishing structural properties
within other service capacity management problems.

3. Managerial insights from a numerical case study. Using guest arrival and departure data from
a large city-center hotel, we find that: (a) Reallocating some room attendants to later shift start
times can nearly eliminate guest waiting for rooms after the posted check-in time. (b) The hotel
can start its afternoon shifts earlier to gain flexibility in how many workers to allocate to morning
versus afternoon shifts while still eliminating guest waiting. (c) Starting some workers’ shifts later
in the morning allows a hotel to offer workers flexibility — which could help with recruitment and
retention — and improves operational performance. (d) The option to employ some room attendants
for shorter shifts can reduce staffing costs when the volume of rooms to clean is high.

The remainder of this paper is organized as follows: Section 2 reviews the relevant literature. We
present the model in Section 3 and establish structural properties in Section 4. We provide a solution
heuristic in Section 5 and managerial insights from a numerical case study in Section 6. We conclude
with a summary of our findings in Section 7.

2. Literature Review
Research on hospital bed availability that considers both discharges and admissions provides the clos-
est context for our model of turnaround operations. Mills et al. (2021) study operational strategies
that hospitals can use to manage both discharge and arrival processes to improve a hospital’s ability
to accommodate a surge of patients. Shi et al. (2015) demonstrate the impact of discharge times on
inpatient (check-in) delay due to bed availability. Based on this study Zychlinski et al. (2020) apply
a fluid model for the inpatient flow congestion problem in a hospital setting. Gaughan et al. (2015)
examine the association between the number of nurses and the bed-blocking time using regression
models. While these papers model bed availability, they do not explicitly model the cleaning work-
force, limitations to its capacity, or shift planning decisions in any detail. Other research in health
care settings has shown a similar high-level qualitative insight on the value of staggering shift start
times: Sinreich and Jabali (2007) demonstrate that staggering shifts can reduce staffing hours while
maintaining operational performance. Huang et al. (2021) also report that staggering shift start times
can improve nurse job satisfaction.

The capacity management decisions that we study most closely resemble work in the operations
management literature that simultaneously considers staffing levels and worker tour scheduling. Call
center staffing motivates much of the research with this focus. A common approach to staffing deci-
sions uses a stationary independent period by period (SIPP) assumption that allows staffing levels to
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be chosen using a series of stationary queueing models. Green et al. (2001) critique the effectiveness
of SIPP approaches for call center applications. Atlason et al. (2008) propose a solution method
that more explicitly models worker shifts. Despite these similarities, staffing for turnaround oper-
ations has a fundamentally different orientation: ideally, the workers service the assets in advance
of customer arrivals, and an inventory of turned assets that are available to distribute can form. A
SIPP-like approach allocating server capacity to match customer arrival patterns may perform poorly
if turnaround times are not trivial. However, scheduling capacity too far in advance risks servers
being idle due to a lack of returned assets to service.

The problem of machine breakdown and repair also relates to our work as a specific instance of a
turnaround operation. To clarify the analogy in a hotel context, rooms would correspond to machines
that break down (i.e., when a guest departs), and room attendants are like repair workers who render
the room suitable for occupation. Neuts and Lucantoni (1979) study the relationship between the
size of the repair crew and the queue length under Markovian assumptions. Moinzadeh and Aggarwal
(1997) develop a production-inventory system with machine breakdowns and deterministic repair time
to study the throughput of the model. Based on this work, Sabri-Laghaie et al. (2012) present search
algorithms to find the optimal number of repair crews. Delasay et al. (2012) study routing decisions
for a finite-population queueing system in a specific turnaround operation — shovels “serving” trucks
in surface mines — that the authors connect to machine repair problems. The turnaround operations
we study differ in their scale and modeling assumptions: Each customer arrival and departure pair
corresponds to one asset that needs to be serviced, and we require general models of each process
over a finite time horizon. Furthermore, in contrast to machine breakdown and repair models, we
focus on shift planning, which is especially important for the potentially large service workforce in
our model’s applications.

Methodologically, we utilize a sample-path approach to analyze the system’s capacity to service
resources and present our results within a discrete convexity framework.

Sample path analysis has been widely applied to complicated service systems, often to support
coupling results and the stochastic ordering of service policies. For example, Slaugh et al. (2016) use
a sample path approach to prove structural results and identify the optimal rental unit selection rule
for a system with rental inventory. Freund et al. (2022) also use a sample path approach to analyze
the problem of allocating bicycles among stations in a bike-sharing system.

Our structural results utilize two frameworks, DR-submodularity and M♮-convexity, that have
limited exposure to operations applications, especially service capacity management. For our most
general model, we use the concept of DR-submodularity of Soma and Yoshida (2018), who build on
(Nemhauser et al. 1978) to consider submodular functions defined over an integer lattice. Küçükyavuz
and Yu (2023) identify various applications of DR-submodularity, such as sensor placement and
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social media influence propagation. For M♮-convexity, Chen and Li (2021b) discuss its application
to multiproduct inventory models with substitution, and Chen and Li (2021a) also consider the
framework’s application to network flow problems and production problems. Zacharias and Pinedo
(2017) and Zacharias and Yunes (2020) utilize discrete convexity frameworks to study the design of
service systems that use appointments. Kaspi et al. (2017) prove M♮-convexity for a bivariate bike-
sharing model. However, Freund et al. (2022) shows the property of M♮-convexity is not preserved in
a model with unusable bikes. They instead rely on the concept of multimodularity. Shioura (2022)
shows M♮-convexity for a related bicycle dock reallocation problem. Like these results, we find that
M♮-convexity does not hold for the most general version of our problem but does hold with an
additional assumption. To prove our result, we use the simpler local exchange axioms of Murota and
Shioura (2018) — which we are the first to employ in the operations management literature — as
the complexity of the state equations prohibits an approach similar to Shioura (2022).

While we are the first to provide analytical results specific to the domain of hotel housekeeping,
hotel operations have received some attention in the operations literature. Bitran and Gilbert (1996)
model reservation acceptance decisions and presented heuristics to decide how many rooms to allo-
cate to “walk-in” customers. Soltani and Wilkinson (2010) study how hotels can use flexible room
attendants to improve housekeeping efficiency. Chen et al. (2021) conduct a field study to show that
dividing housekeeping work into “contaminated” and “sanitary” tasks improves hygiene and labor
efficiency. Motivated by front desk staffing, Thompson and Goodale (2006) present a tour scheduling
approach for a service workforce with heterogeneous productivity rates among workers. Sari (2017)
measures room attendant performance by a fuzzy score-based model. Malony et al. (2012) and Kadry
et al. (2017) simulate the housekeeping process of a hotel using discrete event simulation software to
reduce customer waiting and staffing costs, but did not provide a formal model or offer managerial
insights useful to a large-scale hotel. Wood et al. (2005) describe metrics for the performance of
housekeeping operations through audit questionnaires.

3. Model
We represent the staffing problem to turn around resources between customer usage periods using
a discrete-time model with equal-length time periods over a finite horizon. While servers are either
idle or busy, each resource goes through a cycle of four states. For convenience, we label these states
using terminology from a cleaning-focused operation: occupied, vacant dirty, in-process, and vacant

clean. While a resource is in use, it is occupied. Once the customer departs and releases occupancy
of a resource, the resource is vacant dirty and available to be serviced. Once servicing begins, the
resource’s state is in-process, and the server is unavailable until servicing is completed. The resource
then becomes vacant clean, and the server is available to service another resource. A vacant clean
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Table 1 Model Notation
Time Parameters

T Length of time horizon
β ⊆ {1, . . . , T − 1} Periods in which servers may start a shift; i.e., yt = 0 for t /∈ β

N Number of periods in which servers may start a shift, N = |β|
H Number of time periods required to service a resource
L1 Work duration of a shift from start until mid-shift break
B Mid-shift break duration
L2 Work duration from mid-shift break to end of shift

Sample Path
At Number of arrivals in period t (realized as at)
Dt Number of departures in period t (realized as dt)

Decision Variables and States
y = (y1, . . . , yT −1) Number of servers starting shifts in each period

Vt(y) Number of vacant dirty resources at the beginning of period t
It(y), I0 Inventory position for vacant clean resources at the end of period t
Wt(y) Number of customers waiting for a resource at the end of period t
St(y) Number of resources for which servicing starts in period t
z(y) Number of active servers in each period t, z(y) = {z1(y), . . . , zT (y)}
Rt(y) Number of servers available to begin servicing a resource in period t

Costs
kt Cost of one unit of capacity (i.e., shift worked) beginning in period t
bt Cost of waiting per customer at the end of period t

C(y) Total cost for a single sample path of arrivals and departures

resource may then be assigned to another customer. If a customer arrives and no vacant clean
resources are available, the customer waits in a queue for available resources. Although we use the
terminology “dirty” and “clean” for our resource states throughout this paper, the static capacity
level may represent other settings in which machines — rather than scheduled labor working in
defined shifts — perform a necessary servicing task. For example, servers in this model could be
charging stations for a car rental company that uses electric vehicles.

Throughout this paper, we assume that all resources are interchangeable and suitable for any
customer. Also, any server can service any resource. All functions refer to a single sample path
of customer departures and arrivals, dt and at, respectively, for t = 1, . . . , T ; we omit the notation
explicitly denoting the sample path to simplify the expressions; i.e., f(y, at, dt) := f(y). Additionally,
we let d0 represent the number of vacant dirty resources at the beginning of the time horizon. The
objective is to minimize the total expected cost of staffing and customer waiting over all possible
sample paths of arrivals and departures. All proofs appear in the online supplement. A guide to
notation appears in Table 1.

To model the shift planning decision, we define the staffing vector as y = (y1, . . . , yT −1) ∈ ZT −1
+ ,

where yt is the number of worker shifts starting in period t and Z+ is the set of nonnegative integers.
The sequence of events at the beginning of each period t= 1, . . . , T is as follows: First, we observe the
number of departures, dt, and arrivals, at, which are realizations of Dt and arrivals At, respectively.
Each departure corresponds to one resource being added to the inventory of vacant dirty resources.
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The variable Vt(y) represents the number of vacant dirty resources for a system with staffing vector
y after the departures are realized and before workers are assigned to servicing the resources —
a relationship defined by (1). Second, all resources that began a turnaround operation in period
t−H are added to the inventory of vacant clean resources, where H ∈ N represents the number of
periods required to complete the turnaround operation, and N denotes the set of natural numbers.
The servers may become available to service another resource. Third, the turnaround servicing begins
for St(y) resources, where St(y) denotes the number of resources for which turnaround servicing
starts in period t (after servers who started cleaning in period t−H become available again). As
defined by (2), this value is constrained by the number of available servers in period t, Rt(y), and the
number of vacant dirty resources, Vt(y). Finally, as many cleaned resources as possible are assigned
to customers, and the inventory position of cleaned resources, It(y), updates. The inventory position
at the end of period t, It(y), is defined by (3) as the difference between the cumulative number of
resources fully serviced and the cumulative number of customer arrivals by period t. We also allow
I0 > 0 to represent the vacant clean resources available at the beginning of the time horizon.

We use five states: Vt(y), St(y), It(y), zt(y),Rt(y) — which are the number of vacant dirt resources,
number of resource turnaround operations to start, inventory position, number of on-duty staff,
and number of available staff at time t, respectively — to specify the system state and the state
transitions. The following state equations characterize our system:

Vt(y) = d0 +
t∑

n=1
dn−

t−1∑
n=1

Sn(y), (1)

St(y) := min{Vt(y),Rt(y)} , (2)

It(y) = I0 +
t−H∑
n=1

Sn(y)−
t∑

n=1
an. (3)

In the context of many labor-intensive services, workers take a mid-shift break, which is important
to consider for shift planning decisions to accurately predict when resources become vacant and clean.
Servers may begin working a shift in any period t∈ β, β ⊆ {1, . . . , T − 1}. One shift consists of three
time intervals: a work period of duration L1 > 0 periods before a mid-shift break, a break of duration
B ≥ 0 periods, and a work period of L2 ≥ 0 periods after the break. This structure means that if a
server starts in period t, then the server shift concludes at the end of period t+L1 +B+L2− 1. In
addition, we require yt = 0 for t /∈ β. The potential difference between β and {1, . . . , T −1} allows for
a system in which, for example, shifts may only start “on the hour” even if each time step corresponds
to five minutes. For convenience in the analysis to follow, we denote the cardinality of β by N ; that
is, N := |β|. In particular, we use the decision vector representation y ∈ ZN

+ , where N = |β| is the
number of allowable starting times. This representation is equivalent to the full vector representation
y ∈ ZT −1

+ with the constraint that yt = 0 for t /∈ β, as there is a one-to-one correspondence between
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the two: each y ∈ZN
+ defines a unique y ∈ZT −1

+ with yt ≥ 0 for t∈ β and yt = 0 otherwise, and vice
versa.

From the staffing vector, we derive the capacity vector z(y) = (z1(y), . . . , zT (y)), which is the
number of “on-duty” servers in each period; i.e.,

zt(y) :=
t∑

n=t−L1+1
yn +

t−L1−B∑
n=t−L1−B−L2+1

yn, (4)

where the two terms are the number of active housekeepers who have yet to take their break and
those who have already completed their break.

A model with turnaround service spanning multiple periods (i.e., H > 1) requires extra attention
to work rules before the mid-shift break and at the end of the shift. Specifically, a server may begin
servicing a resource in the last H − 1 periods before a break or the end of a shift, but that resource
would need to be finished at another time and perhaps by another server. However, it is possible that
another server might not be available immediately. To accommodate this situation without significant
complexity from explicitly modeling individual servers and resources, we assume that the number of
available servers in period t is

Rt(y) := zt(y)−
t−1∑

n=t−H+1
Sn(y), (5)

which allows Rt(y) < 0. The negative part of the number of available servers, [Rt(y)]−, represents
the deficit in the number of available servers and is the number of resources in progress that need
to be completed as soon as another server becomes available. Effectively, a resource that is partially
serviced and waiting for service to resume is fractionally allocated to a customer. These fractions
resolve to integers once sufficient capacity becomes available. This assumption allows us to avoid
a secondary server-to-resource assignment optimization problem and other algebraic complications
that prohibit analytical results. We provide a simple numerical illustration and discuss this in more
detail in Section 2 of the online appendix.

From (2), we express the cumulative number of starts as
t∑

n=1
Sn(y) =

t−1∑
n=1

Sn(y) +St(y) =
t−1∑
n=1

Sn(y) + min{Vt(y),Rt(y)} .

Substituting using (1) and (5),
t∑

n=1
Sn(y) =

t−1∑
n=1

Sn(y) + min
{

t∑
n=0

dn−
t−1∑
n=1

Sn(y), zt(y)−
t−1∑

n=t−H+1
Sn(y)

}

which is equivalent to
t∑

n=1
Sn(y) = min

{
t∑

n=0
dn,

t−H∑
n=1

Sn(y) + zt(y)
}
. (6)
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Each server whose shift begins in period t ∈ β has a cost kt > 0. The penalty for waiting is bt ≥ 0
per customer in each period t= 1, . . . , T . The value of bT may be set to be especially large to penalize
instances of customers waiting at the end of the time horizon. Let Wt(y) = [It(y)]− denote the
number of guests waiting at the end of period t. We can then define the objective as minimizing
the expectation of the cost function, C(y), which represents the total cost of staffing and customer
dissatisfaction from waiting:

min
y∈ZT −1

+

E [C(y)] =E
[

T∑
t=1

btWt(y) +
T −1∑
t=1

ktyt

]
. (7)

4. Analytical Results
We first provide analytical results for the main model with server shifts in Section 4.1, which is
motivated by hotel housekeeping. In Section 4.2, we provide stronger results enabled by the model
with single-period shifts, which can serve as a benchmark on the value of flexible capacity. Finally,
Section 4.3 includes analytical results for a turnaround operation performed by machines that provide
static capacity levels over time, such as electric vehicle recharging stations.

4.1. Model with Server Shifts
Our analysis of turnaround operations with server shifts relies on the concept of diminishing return
submodularity/supermodularity (DR-submodularity/supermodularity) to understand the connection
between the cost function and the staffing decision. In the analysis to follow, let ei be the unit vector
with the i-th entry being 1. We define DR-submodularity as follows:

Definition 1. (Soma and Yoshida 2018) A function f : ZN → R ∪ {+∞} with domf ̸= ∅ is
DR-submodular if f(x + eu)− f(x) ≥ f(y + eu)− f(y) for arbitrary x ≤ y (coordinate-wise) and
u∈ {1, . . . , V }.
DR-submodularity is stronger than submodularity; i.e. any DR-submodular function is also submod-
ular. By Lemma 2.3 of Soma and Yoshida (2015), a submodular function is DR-submodular if and
only if it satisfies the coordinate-wise concave condition: f(x+eu)− f(x)≥ f(x+ 2eu)− f(x+eu)
for any x and u ∈ {1, . . . , V }. Furthermore, if a function f is DR-submodular, its negation, −f , is
DR-supermodular.

We use Definition 1 to show that the cumulative number of service episodes started by time
period t,

∑t
n=1 Sn(y), for all t ∈ {1, . . . , T} is DR-submodular in y. To do so, we first demonstrate

a local condition on the marginal value of the additional server. This condition is stronger than the
requirement to establish DR-submodularity and is useful in the subsequent analysis.

Lemma 1. The cumulative number of turnaround operations started by each period,
∑t

n=1 Sn(y),
satisfies the following local diminishing marginal return property:

t∑
n=1

Sn(y + ei + ej)−
t∑

n=1
Sn(y + ei)≤

t∑
n=1

Sn(y + ej)−
t∑

n=1
Sn(y),
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for t∈ {1, . . . , T}, y ∈ZN
+ , and i, j ∈ β.

The proof is by induction on each time period going forward through the horizon. This result is

intuitive: the value of adding an additional server, in any period, to a schedule with less capacity

surpasses the value of a schedule with more capacity. Consider two schedules, y and y′, which are

identical except that y′ has one additional server working a shift starting at some arbitrary time.

The marginal value of adding one more server to the y schedule is at least as great as adding one

more server at the same time to the y′ schedule. We show that Lemma 1 implies DR-submodularity

in Proposition 1.

Proposition 1. The cumulative number of turnaround operations begun by any period t,∑t
n=1 Sn(y), is DR-submodular for t∈ {1, . . . , T} and y ∈ZN

+ on any sample path.

Following Proposition 1, we can show that the queue length in each period is DR-supermodular.

Lemma 2. The number of customers waiting at the end of each period, Wt(y), is DR-supermodular

on any sample path.

We extend this result to the expected total cost, E [C(y)], and show that it is DR-supermodular in

yt. To do so, we rely on Lemma 2 and the property that DR-submodularity (supermodularity) is

closed under addition (Soma and Yoshida 2018).

Proposition 2. The total expected cost, E [C(y)], is DR-supermodular in the scheduling decision

y.

Furthermore, we observe that the total expected cost function is a non-monotone DR-supermodular

function with respect to the staffing decision vector y, as adding more servers decreases the wait-

ing cost but increases the labor cost. Leveraging this property, the minimization problem defined in

Equation (7) can be addressed using either a pseudopolynomial-time algorithm or a slightly faster

polynomial-time algorithm, both proposed by Soma and Yoshida (2017). Notably, Soma and Yoshida

(2017) establish that both heuristics achieve a tight optimality rate of 1
2 , meaning that the perfor-

mance of the heuristic solution is at most 1
2 away from that of the optimal solution.

4.2. Model with Fully Flexible Capacity

A second model of resource turnaround operations assumes fully flexible capacity in which shift

lengths are only one period; i.e., L= 1. The primary purpose of this simpler model is to illuminate

the difficulties of analyzing more complicated staffing problems, such as the model in Section 4.1. In

particular, it allows us to explore a discrete convexity concept that has so far been shown in very few

operations applications. Certain long-duration maintenance or cleaning scenarios — such as airplane
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maintenance checks or cruise ship turnaround — in which a task requires approximately the entire

shift also serve to motivate this model.

We first use indicator functions to characterize the marginal value of a shift when the shift length

is L= 1.

Lemma 3. When L= 1, adding a server in period i has the following marginal effect on the number

of customers waiting at the end of period t:

Wt(y)−Wt(y + ei) = 1{Wt(y)> 0}
t−H∏
n=i

1{Vn(y)> zn(y)}. (8)

We next introduce M-convexity and describe the property’s implications. For a vector z ∈ ZN , we

denote the positive and negative supports of z by

supp+(z) = {i|zi > 0}, supp−(z) = {j|zj < 0}.

Definition 2. (M♮-convex in Murota (2021)) A function f : ZN →R∪{+∞} with domf ̸= ∅ is

M♮-convex if, for any y, y′ ∈ZN and i∈ supp+(y−y′), we have (i)

f(y) + f(y′)≥ f(y− ei) + f(y′ + ei) (9)

or (ii) there exists some j ∈ supp−(y−y′) such that

f(y) + f(y′)≥ f(y− ei + ej) + f(y′ + ei− ej). (10)

This property is referred to as the exchange property.

An M♮-convex function, f : ZN
+ → R ∪ {+∞}, has a corresponding M-convex function,

f̃ : ZN+1
+ → R ∪ {+∞}, if its domain, domf̃ , is contained within a hyperplane defined by{

(y, yT )∈ZN+1
+ |

∑T
t=1 yt = Y

}
for some Y ∈ Z+ and a slack variable yT ∈ Z+(Murota and Shioura

2018). As stated in Murota (2021), “M-convex functions and M♮-convex functions are equivalent

concepts, in that M♮-convex functions in n− 1 variables can be obtained as projections of M-convex

functions in n variables.” Thus, a function f :ZN
+ →R∪{+∞} is M♮-convex if and only if the function

f̃ :ZN+1
+ →R∪{+∞} defined by

f̃(y0,y) =
{
f(y) if y0 =−

∑T −1
t=1 yt,

+∞ otherwise.
(y0 ∈Z) (11)

is an M-convex function (Murota 2021). For our model, we use y0 = yT − Y so that the hyperplane

constraint is
∑T

t=1 yt = Y . Thus, by Theorem 4.1 of that same paper, the M-convexity of f̃(y0,y)

corresponds to the M♮-convexity of f(y).
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In our context, the total server constraint restricts scheduling decisions to this hyperplane by
requiring that the total number of servers equals Y , with yT representing servers who are left “un-
scheduled” by assigning them a shift start time of the very last period so that any resources serviced
by those servers would have no effect on the objective function. Therefore, we will show that the
total cost function is M-convex in the scheduling decision y. This result allows us to use the steepest
descent algorithm in Shioura (2022) to find the optimal schedule that minimizes the total cost for
the turnaround operation with fully flexible capacity.

Building on Definition 2, we find that a local exchange axiom best facilitates sample path analysis
of our model given its complicated operational dynamics. Unfortunately, the local exchange axioms
of Murota (2003) require simultaneous consideration of any four dimensions of y, which makes
the analysis prohibitively complex. However, Murota and Shioura (2018) propose simpler exchange
axioms that require only three dimensions. To the best of our knowledge, we are the first to apply
these axioms to an operations model with state dynamics.

Specifically, we use Theorem 4.5 of Murota and Shioura (2018), which allows us to show M♮-
concavity through the following conditions:

(L1[Z]) ∀x∈ZN ,∀i, j ∈ β : f(x+ ei + ej) + f(x)≤ f(x+ ei) + f(x+ ej)

(L2[Z]) ∀x∈ZN ,∀i, j, k ∈ β with k ̸∈ {i, j} :

f(x+ ei + ej) + f(x+ ek)

≤max [f(x+ ei + ek) + f(x+ ej), f(x+ ej + ek) + f(x+ ei)]

We note that M♮-concavity is equivalent to M♮-convexity for the negative of a function, as seen
by comparing (M♮-EXC[Z]) in Murota and Shioura (2018) with (M♮-EXC) in Murota (2021). To
facilitate the proof, we reformulate (L2[Z]) in the following lemma.

Lemma 4 (L2 Equivalency). L2 in Murota and Shioura (2018) holds ∀x∈ZN ,∀i, j, k ∈ β with
k ̸∈ {i, j} if and only if at least one of the following is true:

f(x+ ei + ej) + f(x+ ek) = f(x+ ei + ek) + f(x+ ej)≥ f(x+ ej + ek) + f(x+ ei) (12)

f(x+ ei + ej) + f(x+ ek) = f(x+ ej + ek) + f(x+ ei)≥ f(x+ ei + ek) + f(x+ ej) (13)

f(x+ ej + ek) + f(x+ ei) = f(x+ ei + ek) + f(x+ ej)≥ f(x+ ei + ej) + f(x+ ek) (14)

Our problem satisfies the conditions of Theorem 4.5 necessary for us to prove M♮-convexity through
(L1[Z]) and (L2[Z]): y = (0, . . . ,0) is a feasible solution and an arbitrarily large maximum value can
be chosen for each yi ∈ y as the maximum number of servers to work in any time period. Showing
that (L1[Z]) holds follows from Lemma 1. We show that (L2[Z]) holds in a specific manner: in
particular, when i≤ j ≤ k, f(x+ ei + ek) + f(x+ ej) is equal to either f(x+ ei + ej) + f(x+ ek) or
f(x+ ej + ek) + f(x+ ei) and greater than or equal to both of these terms.
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Proposition 3. For a fully flexible staffing model (i.e., L= 1), the number of customers waiting
at the end of any period t, Wt(y), is M ♮-convex on any sample path.

We next use Proposition 3 to show that the expected cost function is M♮-convex in y. While the
sum of two M♮-convex functions is not necessarily M♮-convex, we show that the (L1[Z]) and (L2[Z])
conditions continue to hold for the average cost over multiple sample paths.

Proposition 4. The expected total cost, E [C(y)], is M♮-convex in y.

Because M♮-convex functions satisfy (M ♮−EXC[Z]) by definition, M-convexity follows immediately
from Theorem 4.1 of Murota and Shioura (2018) by defining

C̃(y0,y) =
{
C(y) if y0 =−

∑T −1
t=1 yt,

+∞ otherwise.
(y0 = yT −Y ) (15)

While this step is trivial, it ensures that we can use search algorithms that require M-convexity.

Corollary 1. The expected total cost, E
[
C̃(y0,y)

]
, is M-convex in (y0,y).

However, M-convexity may fail to hold more generally, particularly when shifts have a duration
greater than one period; i.e., L> 1.

Proposition 5. When L> 1, the number of customers waiting at the end of period t, Wt(y), is
not necessarily M ♮-convex.

In a counterexample provided as Table 8 as part of the proof of Proposition 5 in the online
supplement, the d1 = 9 departures occur in the first period, and no further departures occur. With
shift duration L = 3, the pair of sample paths with y = (1,2,2) and y = (2,1,1) starts servicing a
combined total of 18 resources by the end of period 3, which is strictly more than 17 service starts
from the pair of sample paths with y = (2,1,2) and y = (1,2,1). In turn, that exceeds the 16 service
starts from the pair of sample paths with y = (2,2,1) and y = (1,1,2). Taken together, this violates
(L2[Z]) for the negative of the number of waiting customers at the end of period 3 if at least 18
customers have arrived by then. While M-convexity does not extend to a more general model of
resource turnaround operations, this result is useful for other researchers to explore other operations
applications of Murota and Shioura (2018).

4.3. Model with Static Capacity

Some technology-oriented turnaround operations, such as charging vehicles or sanitizing medical
instruments, use machines with a static capacity level over time rather than human labor. We analyze
a static capacity decision problem as another way to instantiate the model presented in Section 3.
In this model, servers are available for all periods over the time horizon, and the decision becomes
choosing y ∈Z+, the number of servers for the system.
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While the objective is to minimize the total cost, we first provide results for the relationship
between waiting for and staffing level. We represent the cost of one unit of capacity for the entire
horizon as k > 0. State equations (1) and (3) remain unchanged for the model with static capacity
except for the use of variable y instead of staffing vector y. However, we modify the state equation
(2) for the number of service episodes to begin in a period:

St(y) := min
{
Vt(y), y−

t−1∑
n=t−H+1

Sn(y)
}
, (16)

which reflects that the number of available servers in period t is y−
∑t−1

n=t−H+1 Sn(y)
As in Section 4.1, we first examine the cumulative number of instances in which servicing begins

for resources as a preliminary result.

Lemma 5. For t = 1, . . . , T , the cumulative number of resources for which servicing begins by

periods 1, . . . , t,
∑t

n=1 Sn(y), is discretely concave and non-decreasing in the staffing level y for any

realization of departures d1, . . . , dT .

Lemma 5 is useful to show the relationship between the capacity level and the amount of waiting
by customers in any period.

Proposition 6. The number of customers waiting, Wt(y), for an available resource at the end

of each period t is discretely convex and non-increasing in the staffing level y for any realization of

departures d1, . . . , dT and arrivals a1, . . . , aT .

The system’s objective remains the minimization of the total cost of staffing and customer dissat-
isfaction, which we now express as

C(y) =
(
bt

T∑
t=1

Wt(y)
)

+ ky. (17)

Proposition 7. The expected cost, E [Ct(y)], is discretely convex in the staffing level y.

Proposition 7 ensures that any local optimal solution found is also a global optimal solution and
simple algorithms like steepest descent can be used to quickly find the global optimal solution.

5. Solution Methods
The shift planning and staffing problem defined in Section 3 is difficult to solve numerically. The
action space can be of high dimension if the set of allowable shift start times is not trivially small.
Random arrivals and departures further complicate the problem. We propose a method that utilizes
the structural properties we showed in Section 4 and sample average approximation (SAA) methods
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to efficiently solve this stochastic discrete optimization problem. We describe the SAA method in
the context of our problem in Section 5.1 and how SAA can be used in conjunction with searching
algorithm in Section 5.2. A linear program (LP) to help find a good initial solution is described in
Section 5.3. In Section 5.4, we report the computational performance.

5.1. Sample Average Approximation

We adopt the SAA method for stochastic discrete optimization described by Kleywegt et al. (2002) to
find the optimal staffing vector. Let ω1, . . . , ωM be independently and identically distributed random
samples of {d1, . . . , dT} and {a1, . . . , aT}. The sample average function is the average total cost over
a fixed number of sample paths; using the notation from Section 3, we write it as

ĉM(y) := 1
M

M∑
j=1

C(y|ωj).

Defining Y =ZM
+ as the domain of y. Let c∗ and ĉ∗ denote the optimal values,

c∗ := min
y∈Y

E [C(y)] , ĉM := min
y∈Y

ĉM(y),

with respective sets of optimal solutions S∗ and ŜM . We also consider ϵ-optimal solutions Sϵ and Ŝϵ
M

for which x̄ is an optimal solution if x̄ ∈ S and c(x̄)≤ c∗ + ϵ. This approach allows us to relax our
stochastic discrete optimization problem into a deterministic optimization problem whose solution
converges to the true solution as the sample size increases. By Kleywegt et al. (2002), as the number
of sample paths increases, the solution from solving the sample path converges to the optimal solution
almost surely; i.e., as M →∞, ĉM → c∗ with probability 1, and for any ϵ≥ 0 the event {Ŝϵ

M ⊂ Sϵ}

occurs with probability 1.

5.2. Search Algorithms on the Integer Lattice

In this section, we introduce a search heuristic to find solutions for the scheduling problem using the
analytical properties we showed in Section 4. Since the proofs in Section 4 are based on sample path
arguments, the structural properties established in Propositions 2, 4, and 7 also apply to the sample
average total cost function, ĉM(y). Specifically, ĉM(y) is DR-supermodular in the staffing vector
y under general server shift lengths. Moreover, with y0 as a slack variable and defining c̃M(y0,y)
that relates to ĉM(y) according to (15), ĉM(y0,y) is M-convex in (y0,y) when the length of the
server shift is one period. The total cost function, ĉM(y), is also discretely convex in y when the
length of the server shift spans the entire planning horizon. Accordingly, we connect Algorithm 1
— a modified minimization algorithm for DR-supermodular functions under cardinality constraints
based on Soma and Yoshida (2017) — to Algorithm 2, the steepest descent algorithm for M-convex
functions from Shioura (2022). We characterize Algorithm 1 and Algorithm 2 in Section 4 of the
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Appendix. This combination enables us to efficiently identify near-optimal solutions for models with
general shift lengths and identify the optimal solution for models with full flexible and static capacity.
Our heuristic has the following steps:

1. Initiate Algorithm 1 to get the output solution ŷ0
M .

2. Input ŷ0
M into the Algorithm 2 and get the solution ŷ∗

M

Since ĉM(y) is DR-supermodular in y under general server shift lengths, Algorithm 1 finds ŷ0
M that

performs at most 1
2 worse than the optimal solution. For the cost function of the model with general

shift lengths, the greedy nature of Algorithm 2 ensures that the performance of the incumbent
solution either improves or remains unchanged with each iteration. For M-convex functions, we
have a guarantee that Algorithm 2 finds an optimal solution (Shioura 2022). Murota (2004) also
demonstrates another important property of the steepest descent algorithm for M-convex functions:
We can find an upper bound on the number of iterations in terms of the distance to an optimal
schedule, ŷ∗

M , from the initial vector, ŷ0
M . Specifically, the number of iterations from ŷ0

M to a global
minimizer of ĉM is bounded by ||ŷ0

M −ŷ∗
M ||1

2 . This result suggests that an initial solution close to the
optimal solution reduces the number of iterations needed for the steepest descent algorithm.

5.3. A Linear Program to Choose a Starting Point and Bound the Solution

To reduce the number of steepest descent iterations, we can obtain a favorable starting point from
a linear programming formulation of the problem. We seek to minimize the sample average function
1

M

∑M
n=1C(y|ωn). The state transition equations from Section 3 provide constraints.

min
T −1∑
t=1

ktyt + 1
M

M∑
n=1

(
T∑

t=1
btW

n
t (y)

)
(18)

subject to

yt ≥ 0

zn
t =

t∑
i=t−L1+1

yi +
t−L1−B∑

i=t−L1−B−L2+1
yi,

Rn
t = zn

t −
t−1∑

i=t−H+1
Sn

i ,

V n
t =

t∑
i=1

dn
i −

t−1∑
i=1

Sn
i ,

Sn
t ≤ V n

t ,

Sn
t ≤Rn

t ,

In
t =

i−H∑
i=1

Sn
i −

t∑
i=1

an
i ,
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W n
t ≥ 0,

W n
t ≥

t∑
i=1

an
i −

t−H∑
i=1

Sn
i ,

∀t∈ {1,2, · · · , T}, ∀n∈ {1,2, · · · ,M},

y′
t = 0, ∀t′ ̸∈ β.

In this linear program, all integer variables are relaxed to be continuous to facilitate a quick solution.

To get an admissible initial point for our heuristic, we round each value yt to the nearest integer.

We denote the solution produced by our search algorithm starting from the rounded LP-relaxation

problem by y′
LP . Then, we use it as a benchmark solution to improve the efficiency and performance

of our search algorithm. Specifically, we refine our heuristic as follows:

1. Initiate Algorithm 1 to obtain the output solution ŷ0
M .

2. Solve the LP-relaxation problem specified by (18) to obtain rounded LP-relaxation solution

y′
LP .

3. Denote the best performing solution between {ŷ0
M ,y

′
LP} as ŷ′

M ; i.e., ŷ′
M = argmax

y∈{ŷ0
M

,y′
LP

}
ĉM(y).

4. Input ŷ′
M into the Algorithm 2 and get the solution ŷ∗

M .

The additional heuristic steps help generate an input, ŷ′
M , that is closer to the optimal solution,

thereby reducing the number of iterations required in Algorithm 2. Since each step strictly improves

the solution’s performance, our heuristic maintains an optimality guarantee of 1
2 for the general model

and ensures the optimal solution for the fully flexible model. In Section 5.4, we use computational

tests to demonstrate the effectiveness of this modification to our heuristic.

The unrounded LP-relaxation solution of problem (18), denoted by y∗
LP , also provides a lower

bound to the cost minimization problem for the server shift model. The values ĉM(y∗
LP ) and ĉM(y′

LP )

produce lower and upper bounds, respectively, of the total cost function:

ĉM(y∗
LP )≤ ĉM(ŷ∗

M)≤ ĉM(y′
LP ). (19)

The distance between ĉM(y∗
LP ) and ĉM(y′

LP ) — i.e., the tightness of the bounds — provides insights

on the performance of ŷ∗
M , which is the solution found by our heuristics. In special case of ĉM(y∗

LP ) =

ĉM(ŷ∗
M), ŷ∗

M is an optimal solution. To evaluate the performance of our heuristic, we measure the

lower bound of the optimality rate of solution y′
LP by

ropt = 1− ĉM(ŷ∗
M)− ĉM(y∗

LP )
ĉM(y∗

LP ) . (20)

The interpretation of the optimality rate is that the performance of ŷ∗
M ’ is at least ropt as good as

the optimal solution ĉM(y∗).
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Table 2 Steepest Descent Algorithm Solution Time by Starting Solution
Sample
Paths Rooms Starting

Solution
Number of Descents CPU Minutes

roptMinimum Maximum Average Minimum Maximum Average

100

400
Algorithm 1 Output 12 18 13.17 10.7 14.4 11.4 100%

8 AM 13 16 13.48 11.3 13.6 11.5 100%
LP Solution 0 2 0.79 2.0 3.3 2.5 100%

800
Algorithm 1 Output 30 41 33.6 20.7 24.9 22.9 100%

8 AM 33 37 33.9 22.0 23.9 23.0 100%
LP Solution 0 3 1.74 2.13 4.6 3.2 100%

1200
Algorithm 1 Output 42 57 45.6 22.8 37.6 26.9 98.3%

8 AM 45 55 52.33 25.6 34.9 32.3 97.7%
LP Solution 0 4 2.43 1.9 5.0 3.7 98.9%

300

400
Algorithm 1 Output 14 22 15.41 33.6 36.1 34.1 100%

8 AM 20 21 20.3 36.9 37.1 37.6 100%
LP Solution 0 2 0.81 2.2 3.7 2.9 100%

800
Algorithm 1 Output 24 26 24.4 40.2 43.1 40.9 100%

8 AM 27 27 27 46.3 47.6 47.0 100%
LP Solution 0 2 0.87 2.3 2.6 3.0 100%

1200
Algorithm 1 Output 42 48 43.2 57.1 67.4 60.4 99.8%

8 AM 46 48 46.9 66.3 69.6 67.3 99.7%
LP Solution 0 3 0.92 2.64 3.66 2.96 100%

5.4. Computational Tests

In our refined solution heuristic, Algorithm 1 is a pseudopolynomial-time algorithm that demon-
strates rapid convergence in practice. Conversely, while Algorithm 2 is generally effective for discrete
problems (Shioura 2022), its implementation often results in longer run times because Algorithm 2
evaluates switching capacity between all combinations of possible start times. As discussed at the
end of Section 5.2, reducing the number of iterations required for Algorithm 2 depends on selecting
a good initial solution. We computationally compare the performance and run times of Algorithm 2
under different starting solutions, including the output from Algorithm 1 and the rounded LP solu-
tion from Section 5.3. We also consider a solution based on the predominant industry heuristic of
nearly all workers starting at 8 am: the starting solution is simply for

⌈
E
[∑T

n=0An

]
/((L1 +L2)/H)

⌉
workers to start at 8 am, where ⌈·⌉ is the ceiling function. We report the time-to-solution and a lower
bound on the optimality rate for each starting point.

We set the total number of rooms on each sample path equal to the number of arriving guests and
the number of departing guests, and all rooms must be cleaned before occupancy (i.e., V0 = 0 and
I0 = 0). Each scenario is evaluated in batches of 30 sets of sample paths. Performance measures include
the total number of descent iterations and total solution times in CPU minutes. The simulation uses
parameters that will be presented in Section 6.

Table 2 shows a significant performance difference in finding the globally optimal solution when
comparing the LP-based starting solution to the other two approaches. Using the LP to find a
favorable starting point greatly reduces the number of descent iterations needed to reach the sample
path optimal schedule: On average, approximately only one additional iteration was required when
starting from the rounded LP solution to find a local optimal solution. Additionally, the solution time
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Figure 1 Distribution of departure and arrival times for a large city-center hotel.

appears to be mostly independent as the number of rooms to clean increases. However, solution time
increases with the number of rooms for the other two methods of obtaining a starting solution. Thus,
the starting point recommended by the LP may be particularly appealing for larger-scale hotels.

6. Numerical Case Study
We illustrate the value of our model in the context of the daily shift planning decision for turning
around — which can be expressed as “turning over” or, most commonly in the hotel context, simply
“turning” — hotel rooms. Specifically, we simulate a typical “sold out” day with 1300 departures and
1300 arrivals at a large city-center hotel. Because of the high occupancy, we assume there are d0 = 0
vacant dirty rooms and I0 = 0 vacant clean rooms (and no waiting guests) at the beginning of the
time horizon. The hotel’s posted check-out and check-in times are 12:00 pm and 3:00 pm, respectively.
Given the trend away from stayover cleaning hastened by the coronavirus pandemic so that rooms
are not cleaned during the guest’s stay (King 2021), we do not initially include stayover cleaning in
our model. We discuss this feature further in Section 6.3.2.

Time Parameters. We use a discrete-time model with each period representing 5 minutes.
Figure 1 shows the distribution of all guest departure and arrival times from October 2018 through
January 2020. To minimize arrivals and departures at the beginning or end of the time horizon,
we select a time horizon starting at 3:00 am (period 0) and ending at 3:00 am (period 287) the
following day. Each departure time is independently drawn from a normal distribution with a mean of
12:10 pm (period 110) and a standard deviation of 3.17 hours (38 periods). Arrival times are similarly
generated with a mean of 3:25 pm (period 149) and a standard deviation of 4.25 hours (51 periods).
The resulting times are rounded to the nearest integer; any generated values outside the horizon are
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resampled. Because guests do not always notify the hotel upon their departure, the distribution that
we use may overestimate guest waiting times; i.e., room attendants might discover vacated rooms
earlier if more aggressive about knocking on doors.

Room attendants each work an eight-hour shift during which they can clean 13 rooms. With 20
minutes of preparation time at the start of the shift and 5 minutes of additional preparation time after
an unpaid 30 minute mid-shift break, the structure of the shift is (L1,B,L2) = (44,7,47) periods.
Each attendant has a deterministic cycle time of 35 minutes, or H = 7 periods, for cleaning rooms. To
simplify the staffing decision and avoid having too many different shift start times, room attendants
may only start their shifts in certain periods: The period in which a room attendant first enters the
room must be “on the hour” within some range of the day.

Cost Parameters. The cost of scheduling a room attendant is kt = $240 for an eight-hour shift
starting in any period t. Guest waiting is not penalized before noon. From noon until 3:00 pm— i.e.,
t ∈ {108, . . . ,143} — the waiting cost is bt = $0.60 per period, which corresponds to $5 per hour.
Starting at the posted check-in time of 3:00 pm, it rises to $50 per hour (bt = 4.17), t∈ {144, . . . ,287}.
Failing to provide a room to a guest by the end of the time horizon has a penalty of b288 = $240
per guest, which could either represent a last-minute “rush” option for hiring extra capacity or a
sufficiently high penalty so that all arriving guests get their keys by end of the horizon.

Sample Path Selection. We generate two sets of sample paths: solving sample paths and testing

sample paths. We apply the heuristic introduced in Section 5.3 to the solving sample paths to solve
for the optimal solution and then report the performance of this solution on the testing sample paths.
We set the size of both the solving and the testing sample paths to be 100; see Section 6 of the online
supplement for testing results that support this choice so that the solution found corresponds to the
actual optimal solution in every combination of solving and testing sample paths.

6.1. Results for Base Model

We first compare the performance of the hotel’s current scheduling strategy for a typical sold-out
night to that of the optimal schedule from our model under different sets of allowable shift start times.
The hotel currently chooses its staffing level by dividing the number of rooms to clean by the daily
cleaning capacity of a room attendant. We refer to the resulting quantity as the minimum staffing

level. The hotel then assigns 90% of these room attendants to a morning shift (8:40 am- 5:10 pm) and
the remaining 10% to the evening shift (3:40 pm- 12:10 am). Given 20 minutes of preparation time
at the start of each shift, room attendants start cleaning their first rooms at 9:00 am and 4:00 pm for
the morning and afternoon shifts, respectively.

Figure 2 displays how this heuristic performs in expectation for a sold-out day. It reveals that room
attendants sometimes run out of rooms to clean around noon and that guests sometimes have to wait
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Figure 2 Number of idle room attendants and guests waiting by time of day for current schedule.

Table 3 Optimal number of room attendants to start each hour by allowable start times.
Shift Start Time Total

4 AM 5 AM 6 AM 7 AM 8 AM 9 AM 10 AM 11 AM 12 PM 1 PM 2 PM 3 PM 4 PM 5 PM 6 PM 7 PM 8 PM
Current Practice 0 0 0 0 0 90 0 0 0 0 0 0 10 0 0 0 0 100
Optimal (All Periods) 1 2 0 18 17 18 9 8 9 9 8 0 0 0 1 0 0 100
Optimal (7 AM -7PM) X X X 18 18 18 10 8 8 9 9 0 0 1 1 0 X 100
Optimal (8 AM - 6PM) X X X X 34 23 22 3 5 5 5 0 0 1 1 X X 100
Optimal (9 AM - 5 PM) X X X X X 41 23 27 2 1 2 2 2 2 X X X 100

for rooms in the later evening hours. The expected extra cost associated with this waiting amounts

to $2763, as reported in Table 4. Table 3 shows how the optimal staffing configuration changes based

on the set of allowable shift start times and compares to starting 90 attendants at 9:00 am and

10 attendants at 4:00 pm. While the total number of room attendants for each policy matches the

minimum staffing level of 100 room attendants, the distribution of ideal start times throughout the

day differs. Specifically, the results support a policy of having more attendants starting later than in

current practice. For all four sets of allowable starting times, at least 40% of shifts are recommended

to start between 10:00 am and 2:00 pm.

Table 4 shows the performance of the schedules presented in Table 3. It reveals an opportunity to

nearly eliminate the two related issues revealed in Figure 2: room attendant idleness from the late

morning until the early afternoon and guest waiting later in the evening. These issues correspond to

observations from managers about occasional idleness or a slower cleaning pace in the morning, as

well as room readiness issues in the evening. All four optimal schedules effectively eliminate customer

waiting penalties; restricting the set of allowable start times has only a very minor effect on customer

waiting. By eliminating waiting, any of these policies would reduce the total cost by approximately

11%.
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Table 4 Performance of optimal schedules from Table 3.

Total Cost Optimality Rate Labor Cost Waiting Cost Waiting after 3 PM
Current Practice $26,763 88.49% $24,000 $2763.29 1.6 minutes
Optimal (All Periods) $24,000 100% $24,000 $0.29 0.0 minutes
Optimal (7AM-7PM) $24,001 100% $24,000 $0.54 0.0 minutes
Optimal (8AM-6PM) $24,001 100% $24,000 $0.78 0.0 minutes
Optimal (9AM-5PM) $24,001 100% $24,000 $0.99 0.1 minutes

6.2. Alternate Schedules with Limited Shift Start Times

Next, we account for the practical constraint of having only a small number of shift start times,

as managers may still wish to foster camaraderie and give instruction through “line up” meetings

at the start of each shift. This tendency has resulted in widespread policies of all room attendants

starting around 8:00 am (or 9:00 am, predominantly in resort-focused markets, such as South Florida)

that has been reported to us by consultants and human resources directors. We have heard differing

opinions about the feasibility and wisdom of dividing the room attendant workforce over more than

two or three shift start times. Some have suggested that simple innovations like daily prerecorded

videos by housekeeping supervisors can replace large group line-up meetings; others fear that large

group meetings would be difficult to replace and that doing so might hurt the sense of belonging

among room attendants.

We first focus on the current schedule with 9:00 am and 4:00 pm as the only allowable start times

and examine how to allocate 100 workers between the earlier and later start options. If too many

room attendants start at 9:00 am, room attendants might clean all vacant dirty rooms and become

idle; however, if too many room attendants start at 4:00 pm, the number of guests arriving to check

in might exceed the number of rooms that have been cleaned. Figure 3(a) shows that this decision

appears to have a convex relationship with the cost decreasing when the number of room attendants

starting at 9:00 am is between 0 and 83 (i.e., 17 or more room attendants starting at 4:00 pm) and

otherwise increases. The optimal allocation is to start with 84 attendants at 9:00 am and 16 at 4:00 pm

for a total cost of $24,010. Furthermore, starting as few as 82 and as many as 89 room attendants

at 9:00 am achieves a solution that has less than $100 in expected guest waiting costs. This analysis

suggests that the hotel can achieve near-optimal performance without dramatic changes in staffing

policies.

Second, we consider the impact of moving the later shift start time from 4:00 pm to 2:00 pm to

understand if performance could improve while still using only two shift start times. Figure 3(b)

reveals that there is indeed a broader set of allocations that incur less than $100 in expected waiting

costs. This corresponds to a longer flat region at the bottom of the total cost curve, which remains

under $24,010 when there are between 63 and 84 workers starting at 9 am. When workers may start
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Figure 3 Total cost vs. number of workers starting later shift when 100 workers are divided among an earlier
and later start time.

Figure 4 Total cost when 16 workers start at 2:00 pm and the remaining 84 workers are divided among 9:00 am
and 10:00 am start times.

at either 9:00 am or 2:00 pm, the manager has more flexibility to allocate cleaning capacity without
risking significant guest waiting for ready rooms.

Third, a conversation with the general manager of a Ritz Carlton beach resort motivated us to
consider the value of two morning shift start times. While Ritz Carlton hotels are renowned for
achieving strong workplace culture, this GM shared that her housekeeping department uses two shift
start times — 9:00 am and 10:00 am— and consequently holds two “line up” meetings every morning.
This practice both reduces the risk of room attendant idleness and allows her to recruit and retain
workers for whom a later start time would be more convenient. Thus, we investigate the value of this
practice for our model by allowing workers to start in one of three possible shift start times: 9:00 am,
10:00 am, or 2:00 pm. For simplicity, we fix the number of room attendants starting at 2:00 pm to 16
and vary the remaining 84 across 9:00 am and 10:00 am start times. Figure 4 shows how the total cost
is affected by the different number of housekeepers allocated between 9:00 am and 10:00 am. As in the
previous scenario, we observe a flat region enabling flexibility in managers’ workforce decisions. The
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Table 5 Optimal schedules by cleaning duration.

Cleaning Duration Shift Start Time Total
8 am 9 am 10 am 11 am 12 pm 1 pm 2 pm 3 pm 4 pm 5 pm 6 pm

30 minutes 31 19 20 7 3 4 2 0 0 1 1 88
35 minutes 34 23 22 3 5 5 5 0 0 1 1 100
40 minutes 33 26 24 7 7 4 8 0 0 1 1 111

total cost when between 0 and 50 room attendants are assigned to start at 10:00 am is unchanged.
Thus, this hotel should consider offering alternate or flexible shift start times to help address the
staffing shortage without worrying about its impact on room readiness for guests.

6.3. Sensitivity to Key Parameters

We test the sensitivity of our model when key parameters change to understand the robustness of
our solution and insights. Specifically, we consider different cleaning times, changes to the number of
rooms to clean, and changes to the shift length. A scenario in which room attendants are available
to work four-hour shifts also appears in Section 5 of the Appendix.

6.3.1. Room Cleaning Duration Two trends have the potential to significantly increase or
decrease the average time that it takes room attendants to clean a room: first, the move away from
stayover cleaning during the pandemic might result in longer cleaning times upon a guest’s departure
— a prominent topic in post-pandemic labor negotiations. Second, smart robots hold the promise
to work alongside room attendants to take over tasks such as vacuuming (Yang et al. 2020). To
understand the impact of these changes, we show the performance of our methods when the mean
cleaning duration is increased or decreased by 5 minutes (i.e., H is increased or decreased by one
period). With H = 8, each room attendant can clean 11 rooms per shift; with H = 6, each room
attendant can clean 15 rooms. For this analysis, room attendants may start their shifts on the hour
between 8:00 am and 6:00 pm.

Table 5 reports the optimal schedule for these three different values of the cleaning duration. While
the minimum staffing requirement changes with the cleaning duration, the distribution of cleaning
capacity is similar for these three scenarios: a manager should spread out the number of workers
starting shifts among the morning start times to reduce the risk of idleness and assign two room
attendants in the late afternoon to handle late check-outs. In all cases, the schedules provided by
our model almost eliminate the waiting time after 3:00 pm, incurring less than $1 in guest waiting
penalties.

6.3.2. Cleaning Load and Stayover Requirements We next evaluate the effect of changes
in the total cleaning workload on the optimal workforce strategy through a stayover cleaning re-
quirement or a change in the number of changeover cleanings, which could result from occupancy
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Table 6 Optimal schedules for different numbers of rooms to clean

Rooms to Clean Schedule Total
8 am 9 am 10 am 11 am 12 pm 1 pm 2 pm 3 pm 4 pm 5 pm 6 pm

700 23 12 8 2 4 4 0 0 0 0 1 54
1000 28 12 20 4 4 4 0 0 0 0 1 77
1300 34 23 22 3 5 5 5 0 0 1 1 100
1600 33 36 24 9 4 11 9 0 0 2 1 129
1900 47 29 28 21 6 14 5 1 1 2 2 156

fluctuations or could be viewed as a change in the hotel size. Adding a departure at 9:00 am when
stayover cleaning begins and an arrival at the typical stayover cleaning deadline of 5:00 pm approx-
imates the requirement to clean one stayover room in our model, especially in an opt-in stayover
cleaning model for which those guests opting in may have an especially dirty room. Because this
extension requires identical waiting penalties and cleaning times for both changeovers to be the same,
the resulting model may be conservative in that it overestimates guest waiting. However, models with
a wide range of alternate optimal solutions, such as those presented in Section 6.2, may still provide a
solution with negligible waiting costs even with conservative assumptions. As in the previous section,
we allow housekeepers to start every hour from 8:00 am to 6:00 pm.

Table 6 presents the optimal schedules for different cleaning volumes. All schedules achieve a total
guest waiting cost under $5 and have a similar distribution. However, when the cleaning volume
exceeds 1,300 rooms, the optimal policy is to choose a staffing level higher than the minimum staffing
level. This indicates a tipping point past which the optimal response to the additional cleaning
requirements is to add extra workers beyond the minimum rather than incur waiting costs.

6.3.3. Tighter Turnaround Windows The difficulty of cleaning all rooms in time for guest
arrivals may vary significantly by property or even by specific days at a property. Because the decision
making becomes more important as the problem is more difficult, we test our model by simultaneously
increasing the mean departure time and decreasing the mean arrival time by identical amounts.
Specifically, we start with a mean departure time of 12:00 pm and arrival time of 3:00 pm and move
those two times closer together. Table 7 shows the cost of the optimal schedules with tighter time
windows for cleaning. The optimal cost and waiting time after 3:00 pm increase as the mean arrival
and departure times become closer together. The results indicate that the hotel has the potential to
allow or sell some late check-outs and early check-ins. However, the waiting cost increases significantly
when the time between the mean departure and arrival times is around one hour or less.

Also, we study the impact of the standard deviation of the guest’s arrival and departure distri-
butions on the optimal cost. We use the particularly challenging scenario in which the mean arrival
time and departure time are both 1:30 pm and scale the standard deviations for both distributions by
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Figure 5 Optimal Costs with Different Mean Arrival and Departure Time (Standard Deviation Unchanged)

Table 7 Performance of optimal schedules with different cleaning windows

Mean Arrival and Departure Time Total Cost Optimality Rate Labor Cost Waiting Cost Waiting after 3 PM
(12:00 pm and 3:00 pm) $24,000 100% $24,000 $0 0 minutes
(12:15 pm and 2:45 pm) $24017.45 99.2% $24,000 $17.45 0 minutes
(12:30 pm and 2:30 pm) $24039.35 98.9% $24,000 $39.35 0.1 minutes
(12:45 pm and 2:15 pm) $24102.96 98.3% $24,000 $102.96 0.1 minutes
(1:00 pm and 2:00 pm) $25073.49 98.7% $24,000 $1073.49 0.9 minutes
(1:15 pm and 1:45 pm) $26046.12 97.2% $24,000 $2046.12 1.4 minutes
(1:30 pm and 1:30 pm) $27532.91 96% $24,000 $3532.91 2.2 minutes

Figure 6 Optimal Costs with Different Standard Deviations when Mean Arrival Time and Mean Departure Time
are 1:30 pm

ratios of 0.5, 0.75, 1.25, and 1.5. The resulting staffing problem becomes increasingly hard as arrivals

cluster together and departures cluster together. Figure 6 shows that when the standard deviations

of the arrival and departure distributions are lower than the original setting, the staffing cost can

increase by almost 70% as the hotel needs to overstaff to turn more rooms in the early afternoon and

avoid excessive waiting later in the day.
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Figure 7 Stayover cleanings lessen the operational difficulty of the housekeeping problem for a model with mean
departure and arrival times of 1:30 pm.

6.4. Stayover Rooms as a Capacity Buffer

The trend away from stayover cleaning also motivates another question: does the workforce capacity
to clean stayover rooms provide a buffer for changeover cleaning, thereby making the scheduling
problem easier to solve? In other words, can housekeepers manage stayover cleanings throughout the
day so that they can devote capacity to changeover cleanings when it is most needed? To answer
this question, we use the operationally difficult model from the previous section with mean guest
arrivals and departures both at 1:30 pm and add stayover cleanings. Figure 7 confirms that stayover
cleanings do provide valuable capacity flexibility: guest waiting decreases as the number of stayover
rooms to clean increases. Waiting almost disappears entirely when there are 500 stayover rooms to
clean. Thus, hotels that remove stayover cleaning should recognize an increased risk of guest waiting.

6.5. Room Types

Up to this point, our model has assumed full interchangeability of rooms among guests; in reality,
hotels may have several room types, and guests reserve specific room types. Some hotels even allow
guests to reserve specific rooms. We show how these restrictions may complicate the daily house-
keeping problem. To do so, we divide the hotel’s rooms into equally sized subsets defined by their
room type. Departing and arriving customers are also randomly associated with these room types.
We assume that room attendants randomly choose among the available vacant dirty rooms; thus,
our estimate of guest waiting is conservative as room attendants could opportunistically select rooms
to clean whose type is low on available vacant clean rooms. All other parameters match the base
problem. Figure 8 shows that this fracturing of the hotel and customer population can significantly
increase wait times. The guest waiting time appears to increase exponentially with the number of
room types. Thus, hotels with many room types may need to invest in technology to dynamically
plan room attendants’ schedules and route them through the hotel over the course of a shift.
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Figure 8 Guest waiting costs increase as the number of different types of rooms increases.

7. Conclusions and Future Research
Our models offer a new approach to support managerial decisions about cleaning or charging capacity
for service operations with shared resources. In particular, they can help managers make capacity
timing decisions for a cleaning workforce or charging stations to optimally navigate the trade-off be-
tween the capacity costs and the cost of customer waiting. Focusing on worker shift scheduling makes
our work particularly relevant to labor-intense cleaning operations, such as hotel housekeeping, that
have received little attention in the operations management literature. Besides providing a tactical
decision model and solution strategy, we validate the high-level workforce strategy of flexibility by
allowing some room attendants to start their shifts later in the day without risking room readiness
issues.

Future work on hotel housekeeping and other resource turnaround operations could extend struc-
tural results and simulation models to accommodate additional problem features, such as dynamic
overtime decisions or special cost penalties imposed by union contracts or local regulations. Expand-
ing the planning horizon of the model — which would require more explicit forecasting of sales and
cancellations — could also be valuable for tactical staffing decisions one or two weeks in advance.
Finally, industry innovations, such as robots that work alongside room attendants or apps that allow
customers to choose rooms, present related models that require deeper analysis.

As labor pressures for service systems become more acute due to rising costs and accommodations
for workers, shift planning and other staffing decisions become more important for all service opera-
tions. Frameworks such as DR-submodularity and discrete convexity can enable good decision-making
in many more applications.
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1. Proofs
Proof of Lemma 1 We use an inductive argument to prove this property. First, we show that the

the diminishing return property holds for S1(·) as the based case. When t= 1, we want to show

S1(y + ei + ej)−S1(y + ei)≤ S1(y + ej)−S1(y),

which is equivalent to

min{d0 +d1, z1(y+ei +ej)}−min{d0 +d1, z1(y+ei)} ≤min{d0 +d1, z1(y+ej)}−min{d0 +d1, z1(y)}.

We note that z1(y+ei +ej)≥ z1(y+ei) and z1(y+ej)≥ z1(y). Because z1(y+ei +ej)−z1(y+ei)≤
1 and z1(y + ej)− z1(y)≤ 1, we can re-write the above inequality as:

1{d0 +d1 ≥ z1(y+ei +ej), z1(y+ei +ej)> z1(y+ei)} ≤ 1{d0 +d1 ≥ z1(y+ej), z1(y+ej)> z1(y)},

which holds because d0 + d1 ≥ z1(y + ei + ej) implies d0 + d1 ≥ z1(y + ej) and z1(y + ei + ej) >
z1(y + ei) implies z1(y + ej)> z1(y).

Assuming
∑t′

n=1 Sn(·) satisfies the diminishing return property for all t′ < t, by Equation (6), we
want to show the property holds for period t:

min
{ t∑

n=0

dn,

t−H∑
n=1

Sn(y + ei + ej) + zt(y + ei + ej)
}
−min

{ t∑
n=0

dn,

t−H∑
n=1

Sn(y + ei) + zt(y + ei)
}

≤min
{ t∑

n=0

dn,

t−H∑
n=1

Sn(y + ej) + zt(y + ej)
}
−min

{ t∑
n=0

dn,

t−H∑
n=1

Sn(y) + zt(y)
} (21)

Without loss of generality, we assume i < j and analyze the system based on the value of t relative
to i and j. Based on changes in the number of on-duty servers, we consider two cases: (1) t < j, and
(2) t≥ j.

When t < j, it is trivial to see that this result holds as both sides of the equation are the differences
between two equivalent quantities and thus equal zero.

When t≥ j, we divide our proof into six subcases based on the relationship between
∑t

n=0 dn and∑t−H
n=1 Sn(y + ei + ej) + zt(y + ei + ej),

∑t−H
n=1 Sn(y + ei) + zt(y + ei),

∑t−H
n=1 Sn(y + ej) + zt(y + ej),

and
∑t−H

n=1 Sn(y)+zt(y). In this case, while the first term of the four is the largest and the last term is
the smallest, the relationship between

∑t−H
n=1 Sn(y+ei)+zt(y+ei) and

∑t−H
n=1 Sn(y+ej)+zt(y+ej)
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is ambiguous. This ambiguity arises because a schedule with a server starting a later shift may catch

up and surpass a schedule with a server starting an earlier shift if sufficient departures occur too

late in the time horizon (or during the break) to be fully serviced by the server starting in the time

period i.

The number of active servers (servers on duty and not on break) in this time interval varies across

different schedules according to the following relationship:

zt(y + ei + ej)−zt(y + ei) = zt(y + ej)− zt(y) (22)

= 1{t∈ {j, . . . , j+L1− 1}∪ {j+L1 +B, . . . , j+L1 +L2 +B− 1}}. (23)

In other words, the difference between these terms depends on whether a server that starts at time j

is active at time t. Furthermore, the maximum difference among the terms is 1. For ease of exposition,

we specify an active period of the housekeeper starting in period j as A(j):

A(j) = {j, . . . , j+L1− 1}∪ {j+L1 +B, . . . , j+L1 +L2 +B− 1},

which simplifies 1{t∈ {{j, . . . , j+L1− 1}∪ {j+L1 +B, . . . , j+L1 +L2 +B− 1}} to 1{t∈A(j)}

Case
∑t

n=0 dn ≤
∑t−H

n=1 Sn(y) + zt(y):

In this case, Equation (21) becomes

t∑
n=0

dn−
t∑

n=0
dn ≤

t∑
n=0

dn−
t∑

n=0
dn,

which holds as 0≤ 0.

Case
∑t−H

n=1 Sn(y + ei) + zt(y + ei)≥
∑t

n=0 dn ≥
∑t−H

n=1 Sn(y + ej) + zt(y + ej):

In this case, Equation (21) becomes

0≤
t−H∑
n=1

Sn(y + ej) + zt(y + ej)−
t−H∑
n=1

Sn(y)− zt(y),

which holds because
∑t−H

n=1 Sn(y + ej)≥
∑t−H

n=1 Sn(y) and zt(y + ej)≥ zt(y) on any sample path.

Case
∑t−H

n=1 Sn(y + ej) + zt(y + ej)≥
∑t

n=0 dn ≥
∑t−H

n=1 Sn(y + ei) + zt(y + ei):

In this case, Equation (21) becomes

t∑
n=0

dn−
t−H∑
n=1

Sn(y + ei)− zt(y + ei)≤
t∑

n=0
dn−

t−H∑
n=1

Sn(y)− zt(y),

which holds because
∑t−H

n=1 Sn(y + ej)≥
∑t−H

n=1 Sn(y) and zt(y + ej)≥ zt(y) on any sample path.
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Case
∑t

n=0 dn ≥
∑t−H

n=1 Sn(y) + zt(y),
∑t

n=0 dn ≤
∑t−H

n=1 Sn(y + ei) + zt(y + ei), and∑t
n=0 dn ≤

∑t−H
n=1 Sn(y + ej) + zt(y + ej):

In this case, Equation (21) becomes

0≤
t∑

n=0
dn−

t−H∑
n=1

Sn(y)− zt(y),

which holds by the case assumption.

Case
∑t

n=0 dn ≥
∑t−H

n=1 Sn(y + ei + ej) + zt(y + ei + ej): We note that zt(y + ej) − zt(y) = zt(y +
ei + ej)− zt(y + ei) = 1{t∈A(j)} on any sample path. In this case, Equation (21) becomes

t−H∑
n=1

Sn(y + ei + ej)−
t−H∑
n=1

Sn(y + ei) + 1{t∈A(j)} ≤
t−H∑
n=1

Sn(y + ej)−
t−H∑
n=1

Sn(y) + 1{t∈A(j)},

which holds by the inductive assumption:
∑t′

n=1 Sn(y + ei + ej)−
∑t′

n=1 Sn(y + ei) ≤
∑t′

n=1 Sn(y +
ej)−

∑t′

n=1 Sn(y) holds for all t′ < t.

Case:
∑t

n=0 dn ≤
∑t−H

n=1 Sn(y + ei + ej) + zt(y + ei + ej),
∑t

n=0 dn ≥
∑t−H

n=1 Sn(y + ei) + zt(y + ei),
and

∑t
n=0 dn ≥

∑t−H
n=1 Sn(y + ej) + zt(y + ej):

.

In this case Equation (21) becomes
t∑

n=0
dn−

t−H∑
n=1

Sn(y + ei)− zt(y + ei)≤
t−H∑
n=1

Sn(y + ej) + zt(y + ej)−
t−H∑
n=1

Sn(y)− zt(y).

Since
∑t

n=0 dn ≤
∑t−H

n=1 Sn(y + ei + ej) + zt(y + ei + ej), we have
t∑

n=0
dn−

t−H∑
n=1

Sn(y + ei)− zt(y + ei)

≤
t−H∑
n=1

Sn(y + ei + ej) + zt(y + ei + ej)−
t−H∑
n=1

Sn(y + ei)− zt(y + ei).

By the induction assumption, we have
t−H∑
n=1

Sn(y + ei + ej)−
t−H∑
n=1

Sn(y + ei)≤
t−H∑
n=1

Sn(y + ej)−
t−H∑
n=1

Sn(y).

Adding 1{t∈A(j)} to both sides, we have
t−H∑
n=1

Sn(y + ei + ej)−
t−H∑
n=1

Sn(y + ei) + 1{t∈A(j)} ≤
t−H∑
n=1

Sn(y + ej)−
t−H∑
n=1

Sn(y) + 1{t∈A(j)},

which is equivalent to
t−H∑
n=1

Sn(y+ei +ej)+zt(y+ei +ej)−
t−H∑
n=1

Sn(y+ei)−zt(y+ei)≤
t−H∑
n=1

Sn(y+ej)+zt(y+ej)−
t−H∑
n=1

Sn(y)−zt(y).

Thus, we have
t∑

n=0
dn−

t−H∑
n=1

Sn(y + ei)− zt(y + ei)≤
t−H∑
n=1

Sn(y + ej) + zt(y + ej)−
t−H∑
n=1

Sn(y)− zt(y),

which is the condition that we sought to prove. □
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Proof of Proposition 1 For arbitrary schedules x, y ∈ZV
+ such that x< y (coordinate-wise), y can

be written in terms of x in following way:

y = x+ a1e1 + a2e2 . . .+ aTeT = x+
T∑

i=1
aiei,

since schedules are on an integer lattice. Let xk
j = x +

∑j−1
i=1 aiei + k ∗ ej , i.e. x1

1 = x + e1, x
2
1 =

x+ e1 + e1, . . . x
a1
1 = x+ a1e1 . . . x

aT
T = x+

∑T
i=1 aiei = y. By Lemma 1, we have that

t∑
n=1

Sn(x+ ej)−
t∑

n=1
Sn(x)≥

t∑
n=1

Sn(x+ ei + ej)−
t∑

n=1
Sn(x+ ei),

for t∈ {1 . . . T}, y ∈ZN
+ , and i, j ∈ β. Let i= 1, we have
t∑

n=1
Sn(x+ ej)−

t∑
n=1

Sn(x)≥
t∑

n=1
Sn(x1

1 + ej)−
t∑

n=1
Sn(x1

1).

Using the same logic, we have
t∑

n=1
Sn(x1

1 + ej)−
t∑

n=1
Sn(x1

1)≥
t∑

n=1
Sn(x2

1 + ej)−
t∑

n=1
Sn(x2

1).

Using an inductive argument, we apply this logic through all schedules between x and y on the lattice
to arrive at

t∑
n=1

Sn(x+ ej)−
t∑

n=1
Sn(x)≥

t∑
n=1

Sn(y+ ej)−
t∑

n=1
Sn(y),

for arbitrary schedules x, y ∈ZN
+ such that x < y (coordinate-wise), for all j ∈ β, t ∈ {1 . . . T}, which

is the characterization of the DR-submodularity. □

Proof of Lemma 2 Wt(y) = I−
0 +

∑t
n=1 an−min{

∑t
n=1 an,

∑t−H
i=1 Sn(y)}, i.e., the queue length at

the end of each period equals the cumulative number of arrivals plus the initial queue length and
minus the cumulative number of service episodes started H or more periods ago. We show that
Wt(y) is a DR-supermodular function by showing −Wt(y) is DR-submodular via showing it fulfills
the diminishing margin property described in Lemma 1. Specifically, we want to show:

min
{ t∑

n=1

an,

t−H∑
n=1

Sn(y + ei + ej)
}
−min

{ t∑
n=1

an,

t−H∑
n=1

Sn(y + ei)
}

≤min
{ t∑

n=1

an,

t−H∑
n=1

Sn(y + ej)
}
−min

{ t∑
n=1

an,

t−H∑
n=1

Sn(y)
}

,

(24)

We establish the following claim to facilitate our proof of this inequality:

Claim 1. Let α,β, γ, δ,ψ ∈R satisfy α≥ β ≥ δ and α≥ γ ≥ δ, and suppose

α− β ≤ γ− δ.

Then,
min(ψ,α)−min(ψ,β)≤min(ψ,γ)−min(ψ, δ).
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We distinguish three cases.

Case 1: ψ ≥ α. Then min(ψ,α) = α, min(ψ,β) = β, min(ψ,γ) = γ, and min(ψ, δ) = δ, so the

inequality reduces to α− β ≤ γ− δ, which holds by assumption.

Case 2: ψ≤ δ. Then, min(ψ,α) = min(ψ,β) = min(ψ,γ) = min(ψ, δ) = ψ, so both sides equal zero.

Case 3: δ < ψ < α. Here, min(ψ,α) = ψ. If β ≥ ψ, then min(ψ,β) = ψ and the left-hand side is 0,

so the inequality holds. If β <ψ≤ γ, then min(ψ,β) = β and min(ψ,γ) = ψ. Thus,

min(ψ,γ)−min(ψ, δ) = ψ−min(ψ, δ)≥ ψ− δ≥ ψ− β,

since β ≥ δ. If instead γ < ψ, then min(ψ,γ) = γ. Because ψ − β ≤ α − β ≤ γ − δ, the inequality

follows. Thus, in every case, we have

min(ψ,α)−min(ψ,β)≤min(ψ,γ)−min(ψ, δ),

which completes the proof. □

Continuing the proof of Lemma 2, we observe that Claim 1 directly applies to equation (24), we

let α =
∑t−H

n=1 Sn(y + ei + ej), β =
∑t−H

n=1 Sn(y + ei), γ =
∑t−H

n=1 Sn(y + ej), δ =
∑t−H

n=1 Sn(y), and

ψ =
∑t

n=1 an. We know that

1.
∑t−H

n=1 Sn(y + ei + ej)>
∑t−H

n=1 Sn(y)

2.
∑t−H

n=1 Sn(y + ei)>
∑t−H

n=1 Sn(y)

3.
∑t−H

n=1 Sn(y + ej)>
∑t−H

n=1 Sn(y)

4.
∑t−H

n=1 Sn(y + ei + ej)>
∑t−H

n=1 Sn(y + ei)

5.
∑t−H

n=1 Sn(y + ei + ej)>
∑t−H

n=1 Sn(y + ej),

and by Lemma 1, we know that
∑t−H

n=1 Sn(y + ei + ej) −
∑t−H

n=1 Sn(y + ei) ≤
∑t−H

n=1 Sn(y + ej) −∑t−H
n=1 Sn(y), that is, α− β ≤ γ− δ. Applying Claim 1, we know that equation (24) holds.

Therefore, we know that −Wt(y) is a DR-submodular function, and Wt(y) is a DR-supermodular

function. □

Proof of Proposition 2 The proof directly follows the result that DR-submodularity (supermodu-

larity) is closed under addition (Soma and Yoshida 2018). To see this, we can write out the expectation

of the total cost as follows:

E [C(y)] =
∑
a∈ZT

+

∑
d∈ZT

+

C(y|A= a,D = d)P (A= a,D= d),

where C(y|A = a,D = d) is the total cost function when the arrival sample path, A :=

(A1,A2, . . . ,AT ) takes value a := (a1, a2, . . . , aT ) and the departure sample path, D :=

(D1,D2, . . . ,DT ), takes value d := (d1, d2, . . . , dT ). □
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Proof of Lemma 3. We examine the impact of an additional unit of capacity in period i:

Wt(y)−Wt(y + ei) =
t∑

n=1
an−min{

t∑
n=1

an,
t−H∑
n=1

Sn(y)}−
t∑

n=1
an + min{

t∑
n=1

an,
t−H∑
n=1

Sn(y + ei)}

= min{
t∑

n=1
an,

t−H∑
n=1

Sn(y + ei)}−min{
t∑

n=1
an,

t−H∑
n=1

Sn(y)}
(25)

Considering the possible orderings of
t∑

n=1
an,

t−H∑
n=1

Sn(y), and
t−H∑
n=1

Sn(y + ei),

Wt(y)−Wt(y + ei) = 1{
t−H∑
n=1

Sn(y)<
t∑

n=1
an,

t−H∑
n=1

Sn(y + ei)>
t−H∑
n=1

Sn(y)} (26)

The indicator function, 1{
t−H∑
n=1

Sn(y)<
t∑

n=1
an,

t−H∑
n=1

Sn(y + ei)>
t−H∑
n=1

Sn(y)}, can be viewed as a product
of two indicator functions:

1{
t−H∑
n=1

Sn(y)<
t∑

n=1
an}×1{

t−H∑
n=1

Sn(y + ei)>
t−H∑
n=1

Sn(y)}

For the first indicator function, we observe that

1{
t−H∑
n=1

Sn(y)<
t∑

n=1
an}= 1{Wt(y)> 0},

because Wt(y) =
[

t∑
n=1

an−
t−H∑
n=1

Sn(y)
]+

. For the second indicator function, we want to show

1{
t−H∑
n=1

Sn(y + ei)>
t−H∑
n=1

Sn(y)}=
t−H∏
n=i

1{Vn(y)> zn(y)},

which is equivalent to showing that
t−H∑
n=1

Sn(y + ei) >
t−H∑
n=1

Sn(y) holds if and only if Vn(y) > zn(y)
holds for all n= i, i+ 1, ..., t−H.

We show this equivalency holds by induction on period n = i, . . . , t−H. For n = i, Si(y + ei) =
Si(y) + 1 if and only if Vi(y)> zi(y) by the state equations. Suppose the inductive hypothesis holds
through period τ − 1; we must show it holds for period τ , τ = i+ 1, . . . , t−H.

In the case that
τ−1∑
n=1

Sn(y+ei)>
τ−1∑
n=1

Sn(y) and
∏τ−1

n=i 1{Vn(y)> zn(y)}= 1, then we must consider
the following cases:

1. If Vτ (y) ≤ zτ (y), then
τ∑

n=1
Sn(y + ei) =

τ∑
n=1

Sn(y). To see this, we first observe that Sτ (y) =
Sτ (y + ei) + 1 because Vτ (y + ei) = Vτ (y) − 1 and min{Vτ (y + ei), zτ (y + ej)} = Vτ (y + ei) as
zτ (y + ej) = zτ (y) > Vτ (y + ei) = Vτ (y)− 1. Given the inductive assumption of Vi(y) > zi(y) and
therefore Si(y + ei) = Si(y) + 1, we have

τ∑
n=1

Sn(y + ei) =
τ∑

n=1
Sn(y). Given this relationship and

the state equations, the trajectories for the schedules y and y + ei are the same for periods τ +
1, . . . t−H. Therefore, we have

t−H∑
n=1

Sn(y+ei) =
t−H∑
n=1

Sn(y), and thus 1{
t−H∑
n=1

Sn(y + ei)>
t−H∑
n=1

Sn(y)}=∏t−H
n=i 1{Vn(y)> zn(y)}= 0.
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2. If Vτ (y)> zτ (y), then Sτ (y) = Sτ (y+ei) = zτ (y) = zτ (y+ei), and we maintain
τ∑

n=1
Sn(y+ei) =

τ∑
n=1

Sn(y) + 1. Thus, 1{
t−H∑
n=1

Sn(y + ei)>
τ∑

n=1
Sn(y)} =

∏τ
n=i 1{Vn(y)> zn(y)} = 1. This also implies

that Vτ+1(y + ei) = Vτ+1(y)− 1.
Otherwise, if

τ−1∑
n=1

Sn(y + ei) =
τ−1∑
n=1

Sn(y) and
∏τ−1

n=i 1{Vn(y)> zn(y)}= 0, then Sτ (y + ei) = Sτ (y)
because Vτ (y + ei) = Vτ (y). □

Proof of Lemma 4. Our proof is based on an argument by contradiction and divided into cases
by values of i, j, k. Since (L2[Z]) requires k ̸∈ {i, j}, we divide our discussion into two cases of i= j

and i ̸= j:
Case: i = j. For the first direction, i.e. (L2[Z]) implies one of (12), (13) or (14) holds, we prove by
contradiction. Assume (L2[Z]) holds while none of (12), (13) or (14) holds. Under the case assumption,
i = j, we have f(x + ej + ek) + f(x + ei) = f(x + ei + ek) + f(x + ej). Therefore, (14) reduces
to f(x + ej + ek) + f(x + ei) = f(x + ei + ek) + f(x + ej) ≥ f(x + ei + ej) + f(x + ek). If (14)
is assumed to be not true, we have that ∀i, j, k ∈ N with k ̸∈ {i, j}, f(x+ ej + ek) + f(x+ ei) =
f(x+ ei + ek) + f(x+ ej)< f(x+ ei + ej) + f(x+ ek), which contradicts the (L2[Z]). For the other
direction, we want to show that if one of (12), (13) or (14) holds, then (L2[Z]) holds. Suppose (12)
or (13) holds, then f(x+ei +ej)+f(x+ek) = f(x+ei +ek)+f(x+ej) = f(x+ej +ek)+f(x+ei)
under the case assumption i = j, which directly satisfies (L2[Z]). Supposing Equation (14) holds,
we have f(x+ ei + ej) + f(x+ ek) ≤ f(x+ ei + ek) + f(x+ ej) and f(x+ ei + ej) + f(x+ ek) ≤
f(x+ ej + ek) + f(x+ ei), which satisfies (L2[Z]) because f(x+ ei + ej) + f(x+ ek) is the smallest
term among three terms.
Case: i ̸= j. In this case i, j, k takes three distinct values. For the first direction, i.e. (L2[Z]) implies
one of (12), (13) or (14) holds, we again prove by contradiction. Assume (L2[Z]) holds while none of
(12), (13) or (14) holds. We have 4 sub-cases:
Case A: f(x + ei + ej) + f(x + ek), f(x + ei + ek) + f(x + ej), f(x + ej + ek) + f(x + ei) take three
different values.
Since (L2[Z]) only requires that ∀i, j, k ∈ N with k ̸∈ {i, j}, i, j, k indices needs to be fully inter-
changeable. Specifically, suppose (L2[Z]) and f(x+ei +ej)+f(x+ek)< f(x+ei +ek)+f(x+ej)<
f(x + ej + ek) + f(x + ei) both holds. By interchanging the values of i and k, (L2[Z]) and
f(x + ek + ej) + f(x + ei) < f(x + ek + ei) + f(x + ej) < f(x + ej + ei) + f(x + ek) should both
hold, too. However, this inequality contradicts the (L2[Z]) since f(x + ek + ei) + f(x + ej) <
f(x + ej + ei) + f(x + ek) and f(x + ek + ej) + f(x + ei) < f(x + ej + ei) + f(x + ek) while
satisfying that ∀i, j, k ∈ N with k ̸∈ {i, j}, since after the interchange, i, j, k still takes three
different values. The same exchange can be applied when (L2[Z]) and f(x+ ei + ek) + f(x+ ej)<
f(x+ei +ej)+f(x+ek)< f(x+ej +ek)+f(x+ei) both hold. By interchanging the values of k and
i, (L2[Z]) and f(x+ek +ei)+f(x+ej)< f(x+ek +ej)+f(x+ei)< f(x+ej +ei)+f(x+ek) should
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both hold, too. However, this inequality contradicts the (L2[Z]) since f(x+ ek + ei) + f(x+ ej)<
f(x+ej +ei) + f(x+ek) and f(x+ek +ej) + f(x+ei)< f(x+ej +ei) + f(x+ek) while satisfying
that ∀i, j, k ∈N with k ̸∈ {i, j}, since after the interchange, i, j, k still takes three different values.

Suppose (L2[Z]) and f(x+ ej + ek) + f(x+ ei) < f(x+ ei + ej) + f(x+ ek) < f(x+ ei + ek) +
f(x+ej) both holds, by interchanging he value of j and k, (L2[Z]) and f(x+ej +ek) + f(x+ei)<
f(x+ei +ek)+f(x+ej)< f(x+ei +ej)+f(x+ek) should both hold, too. However, this inequality
contradicts the (L2[Z]) since f(x+ ek + ei) + f(x+ ej)< f(x+ ej + ei) + f(x+ ek) and f(x+ ek +
ej)+f(x+ei)< f(x+ej +ei)+f(x+ek) while satisfying that ∀i, j, k ∈N with k ̸∈ {i, j}, since after
the interchange, i, j, k still takes three different values. The same exchange can be applied to when
(L2[Z]) and f(x+ej +ei) + f(x+ek)< f(x+ek +ej) + f(x+ei)< f(x+ei +ek) + f(x+ej) both
hold, by interchanging the value of j and k, (L2[Z]) and f(x+ej +ek)+f(x+ei)< f(x+ei +ek)+
f(x+ej)< f(x+ei +ej)+f(x+ek) should both hold, too. However, this inequality contradicts the
(L2[Z]) since f(x+ek +ei) + f(x+ej)< f(x+ej +ei) + f(x+ek) and f(x+ek +ej) + f(x+ei)<
f(x+ej +ei)+f(x+ek) while satisfying that ∀i, j, k ∈N with k ̸∈ {i, j}, since after the interchange,
i, j, k still takes three different values.

Suppose (L2[Z]) holds, then f(x+ ei + ek) + f(x+ ej)< f(x+ ej + ek) + f(x+ ei)< f(x+ ei +
ej) + f(x+ ek) cannot hold, because the latter is a direct contradiction with (L2[Z]). Therefore, we
do not need to consider this case. The same argument applies to when we suppose (L2[Z]) holds,
then f(x+ei +ek) + f(x+ei)< f(x+ek +ei) + f(x+ej)< f(x+ei +ej) + f(x+ek) cannot hold
by direct contradiction to (L2[Z]).
Case B: f(x + ei + ej) + f(x + ek) = f(x + ei + ek) + f(x + ej)< f(x + ej + ek) + f(x + ei). Using
the similar interchanging arguments, we assume i′ = k and k′ = i; then, we have f(x+ ei′ + ej) +
f(x+ ek′)>max{f(x+ ek′ + ei′) + f(x+ ej), f(x+ ej + ei′) + f(x+ ek′)}, where i′, j, k′ ∈N with
k′ ̸∈ {i′, j}, which contradicts the definition of (L2[Z]).
Case C: f(x + ei + ej) + f(x + ek) = f(x + ej + ek) + f(x + ei)< f(x + ei + ek) + f(x + ej). Using
the similar interchanging arguments, we assume j′ = k and k′ = j then we have f(x+ ei + ek′) +
f(x+ ej′) > max{f(x+ ei + ej′) + f(x+ ek′), f(x+ e′

k + ej′) + f(x+ ei)} where i, j′, k′ ∈ N with
k′ ̸∈ {i, j′}, which contradicts the definition of (L2[Z]).
Case D: f(x + ei + ek) + f(x + ej) = f(x + ej + ek) + f(x + ei)< f(x + ei + ej) + f(x + ek). This
case is a direct contradiction of the L2[Z] condition.

For the reverse direction, each of (12), (13), or (14) implies L2[Z], the proof is straightforward and
intuitive. Supposing (12) holds, because (12) states that f(x+ei +ej)+f(x+ek) = f(x+ei +ek)+
f(x+ ej)≥ f(x+ ej + ek) + f(x+ ei), we have

f(x+ ei + ej) + f(x+ ek)

= max [f(x+ ei + ek) + f(x+ ej), f(x+ ej + ek) + f(x+ ei)] ,
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which satisfies L2[Z]. Suppose (13) holds, because (13) states that f(x + ei + ej) + f(x + ek) =

f(x+ ej + ek) + f(x+ ei)≥ f(x+ ei + ek) + f(x+ ej), we have

f(x+ ei + ej) + f(x+ ek)

= max [f(x+ ei + ek) + f(x+ ej), f(x+ ej + ek) + f(x+ ei)] ,

which satisfies L2[Z]. Suppose (14) holds, because (14) states that f(x + ej + ek) + f(x + ei) =

f(x+ ei + ek) + f(x+ ej)≥ f(x+ ei + ej) + f(x+ ek), we have

f(x+ ei + ej) + f(x+ ek)

≤max [f(x+ ei + ek) + f(x+ ej), f(x+ ej + ek) + f(x+ ei)] ,

which satisfies L2[Z]. □

Proof of Proposition 3. By Theorem 4.5 of Murota and Shioura (2018), −Wt(y) is M ♮-concave

if and only if it satisfies conditions (L1[Z]) and (L2[Z]). We first observe that (L1[Z]) holds by

Lemma 2.

To satisfy the conditions of (L2[Z]) as presented in Lemma 4, we assume without loss of generality

that i≤ j ≤ k. Under that assumption, we prove four relationships to fulfill the conditions of Lemma 4:

f(x+ ei + ek) + f(x+ ej)≥ f(x+ ei + ej) + f(x+ ek); (27)

f(x+ ei + ek) + f(x+ ej)≥ f(x+ ej + ek) + f(x+ ei); (28)

f(x+ ei + ek) + f(x+ ej)> f(x+ ei + ej) + f(x+ ek) implies

f(x+ ei + ek) + f(x+ ej) = f(x+ ej + ek) + f(x+ ei);
(29)

f(x+ ei + ek) + f(x+ ej)> f(x+ ej + ek) + f(x+ ei) implies

f(x+ ei + ek) + f(x+ ej) = f(x+ ei + ej) + f(x+ ek).
(30)

Condition (27): To satisfy (27) above with f(x) represented by −Wt(y), we show that

Wt(y + ej)−Wt(y + ei + ej)≤Wt(y + ek)−Wt(y + ei + ek) (31)

for t= 1, . . . , T . In other words, it is less valuable (in terms of reducing waiting) to delay employing

the extra unit of capacity from period j to k when there is an extra unit of capacity in period i.

Using Lemma 3, this condition reduces to

1{Wt(y + ek)> 0}
t−H∏
n=i

1{Vn(y + ek)> zn(y + ek)}

≥1{Wt(y + ej)> 0}
t−H∏
n=i

1{Vn(y + ej)> zn(y + ej)}.
(32)

Now, we show (32) in two subcases based on the time period t:
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Case t< k+H: In this case, the extra capacity starting in period k is not active yet. In accordance
with this intuition, (32) holds because the events in the indicator functions on the right-hand side
(RHS) imply the events in indicator functions on the left-hand side (LHS) as Vn(y+ek)≥ Vn(y+ej)
and zn(y + ej)≥ zn(y + ek) when t < k+ h and n= i, i+ 1 . . . , k, and Wt(y + ek)≥Wt(y + ej) for
t < k+H.
Case t≥ k+H : If

∏k
n=i 1{Vn(y+ej)> zn(y+ej)}= 0, then (32) holds trivially. If

∏k
n=i 1{Vn(y+

ej)> zn(y+ej)}= 1, then extra capacity added in period k must have started a job; i.e., Vk(y+ek)>
zk(y + ek). Therefore, Vt(y + ek) = Vt(y + ej) and zt(y + ej) = zt(y + ek) for t > k. Furthermore,
if
∏t−H

n=i 1{Vn(y + ej)> zn(y + ej)}= 1 for t≥ k+H, we must have that Wt(y + ek) =Wt(y + ej)
as the extra capacity added in period k must have resulted in an extra cleaned resource available
to allocate in period k +H. Thus, the two schedules will have turned around the same number of
resources when t≥ k+H, and the condition holds.

Condition (28): To satisfy (28) above, we show that

Wt(y + ej)−Wt(y + ej + ek)≤Wt(y + ei)−Wt(y + ei + ek) (33)

for t = 1, . . . , T . In other words, the extra unit of capacity in period k is more valuable (in terms
of reducing waiting) if the other extra unit of capacity is employed in period i instead of period j.
Applying Lemma 3, the condition reduces to

1{Wt(y + ei)> 0}
t−H∏
n=k

1{Vn(y + ei)> zn(y + ei)}

≥1{Wt(y + ej)> 0}
t−H∏
n=k

1{Vn(y + ej)> zn(y + ej)}.
(34)

To show that (34) holds, we divide our discussion into two cases based on t:
Case t< k+H: In this case, the condition trivially holds with equality. Intuitively, it is because
the extra capacity added in period k has not turned around any resources yet. Therefore, (33) reduces
to

Wt(y + ej)−Wt(y + ei)≤Wt(y + ej)−Wt(y + ei), (35)

which holds with equality.
Case t≥ k+H: In this case, we first note that Wt(y + ej)≤Wt(y + ei) because schedule y + ej

has potentially started one more job than schedule y+ei because j ≥ i. Therefore, in Equation (34),
the first indicator function on the RHS implies the first indicator function on the LHS. For the second
indicators on both sides, we note that zn(y + ei) = zn(y + ej) and Vn(y + ei) ≥ Vn(y + ej) when
t > k; therefore, (34) holds.
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Condition (29): Now, we show that (29) is satisfied, as specified by the following:

Wt(x+ ei + ek) +Wt(x+ ej)<Wt(x+ ei + ej) +Wt(x+ ek) implies

Wt(x+ ei + ek) +Wt(x+ ej) =Wt(x+ ej + ek) +Wt(x+ ei);

We want to show that the inequality part in (29), which can be expressed using indicator functions
as

1{Wt(y + ek)> 0}
t−H∏
n=i

1{Vn(y + ek)> zn(y + ek)}

> 1{Wt(y + ej)> 0}
t−H∏
n=i

1{Vn(y + ej)> zn(y + ej)},
(36)

implies the equality part of (29), which is equivalent to:

1{Wt(y + ei)> 0}
t−H∏
n=k

1{Vn(y + ei)> zn(y + ei)}

= 1{Wt(y + ej)> 0}
t−H∏
n=k

1{Vn(y + ej)> zn(y + ej)}
(37)

These expressions consider the scenario in which the extra unit of capacity is utilized if added in
period k but wasted if added in period j; we must show it is also wasted if added in period i instead
of j. Again, we divide our discussion into two cases based on the value of t
Case t< k+H: Similar to the previous case, the equality holds trivially as the extra server started
in period k has not returned any resources yet; i.e. Wt(y+ej +ek) =Wt(y+ej) and Wt(y+ei +ek) =
Wt(y + ei). Condition (29) becomes

Wt(x+ ei + ek) +Wt(x+ ej)<Wt(x+ ei + ej) +Wt(x+ ek) implies

Wt(x+ ei) +Wt(x+ ej) =Wt(x+ ej) +Wt(x+ ei);

which holds true because of the equality of the implied condition.
Case t≥ k+H: In this case, suppose the inequality in (29) holds strictly. Then, by equation (36),
we have 1{Wt(y + ek) > 0}

∏t−H
n=i 1{Vn(y + ek) > zn(y + ek)} > 1{Wt(y + ej) > 0}

∏t−H
n=i 1{Vn(y +

ej)> zk(y +ej)}. Thus,
∏t−H

n=i 1{Vn(y +ek)> zk(y +ek)}= 1. That is, for schedule y +ek, we have
Vn(y + ek) > zn(y + ek) for any n = i, i+ 1, . . . , k}. Since zn(y + ek) and zn(y + ej) or zn(y + ei)
differ by at most 1 by Lemma 3, we have Vn(y + ej)≥ zn(y + ej) and Vn(y + ei)≥ zn(y + ei) for
all n= i, . . . , t−H. Therefore, we know that both the schedule y + ei and the schedule y + ej are
fully utilized from period i to period t−H, which implies that

∑t
n=1 Sn(y + ei) =

∑t
n=1 Sn(y + ej)

for t≥ j. Furthermore, schedule y + ei and schedule y + ej have the same trajectories after period
j as they started the same amount of work by period j and have the same capacity after period j.
Therefore, we have Vn(y+ei) = Vn(y+ej) and zn(y+ei) = zn(y+ej) for n= k, k+ 1 . . . t−H, and
Wt(y+ei) =Wt(y+ej) for t≥ k+H. Thus, these relationships imply that equation (37) holds with
equality, which implies that (29) holds.
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Condition (30): Finally, we show that Condition (30) is satisfied, as specified by the following:
Wt(y + ei + ek) +Wt(y + ej)<Wt(y + ej + ek) +Wt(y + ei) implies

Wt(y + ei + ek) +Wt(y + ej) =Wt(y + ei + ej) +Wt(y + ek).

We want to show that the inequality part in conditions (30), which can be expressed using indicator
functions as

1{Wt(y + ei)> 0}
t−H∏
n=k

1{Vn(y + ei)> zn(y + ei)}

> 1{Wt(y + ej)> 0}
t−H∏
n=k

1{Vn(y + ej)> zn(y + ej)},
(38)

implies the equality part in conditions (30), which is equivalent to

1{Wt(y + ek)> 0}
t−H∏
n=i

1{Vn(y + ek)> zn(y + ek)}

= 1{Wt(y + ej)> 0}
t−H∏
n=i

1{Vn(y + ej)> zk(y + ej)}
(39)

In words, (38) supposes a scenario in which an extra unit of capacity in period i is wasted but an
extra unit of capacity in period j is utilized. In this case, we must show that an extra unit of capacity
in period j has the same effect as an extra unit of capacity in period k.
Case t< k+H: In this case, the inequality part in (30) is impossible as the extra server started
in period k has not yet had the opportunity to service any resources. Therefore, for t < k +H, we
have Wt(y + ei + ek) = Wt(y + ei) and Wt(y + ej + ek) = Wt(y + ej). Thus the inequality part in
(30) reduces to Wt(y + ei) +Wt(y + ej)>Wt(y + ej) +Wt(y + ei), which is impossible. Therefore,
we disregard this case.
Case t≥ k+H: In this case, suppose the inequality in (30) above holds strictly: i.e., 1{Wt(y +
ei)> 0}

∏t−H
n=k 1{Vn(y + ei)> zn(y + ei)}> 1{Wt(y + ej)> 0}

∏t−H
n=k 1{Vn(y + ej)> zn(y + ej)}. We

consider two subcases: (1) 1{Wt(y+ej)> 0}= 0; and (2) 1{Wt(y+ej)> 0}= 1. For the first subcase,
1{Wt(y + ej)> 0}= 0 implies 1{Wt(y + ek)> 0}= 0 as the number of resources turned around by
schedule y + ek is at least as many as the resources of schedule y + ej for t ≥ k +H. Therefore,
the equality holds as both sides are 0. For the second subcase, where 1{Wt(y + ej) > 0} = 1, for
the inequality to hold,

∏t−H
n=k 1{Vn(y+ei)> zn(y+ei)} must take value 1 and

∏t−H
n=k 1{Vn(y+ej)>

zn(y + ej)} must take value 0. These two terms differ from each other, implying that the extra
capacity added in period i is wasted, whereas the extra capacity added in period j is utilized. In
other words, these two terms are equal to each other if and only if the extra capacity added in i and
j is both utilized or wasted. Therefore, given that the extra capacity added in period i is wasted, the
equality part in (30):

Wt(y + ei + ek) +Wt(y + ej) =Wt(y + ei + ej) +Wt(y + ek) (40)
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reduces to

Wt(y + ek) +Wt(y + ej) =Wt(y + ej) +Wt(y + ek), (41)

which holds with equality. □

Proof of Proposition 4. As in the previous proposition, we need to show that (L1[Z]) and (L2[Z])

continue to hold for −C(y). By (7) we can re-write (L1[Z]) as

C(y + ei + ej) +C(y)≥C(y + ei) +C(y + ej).

Because the staffing costs on each side of the inequality sum to
(
2
∑T −1

t=1 ktyt

)
+ki +kj , this condition

reduces to

T∑
t=1

btWt(y + ei + ej) +
T∑

t=1
btWt(y)≥

T∑
t=1

btWt(y + ei) +
T∑

t=1
btWt(y + ej),

which holds due to Proposition 3 with bt ≥ 0.

The same reduction to inequalities shown to be true in Proposition 3 occurs for the (L2[Z])

conditions, except that the left-hand side and right-hand side of each inequality and equation have

a total staffing cost of
(
2
∑T −1

t=1 ktyt

)
+ ki + kj + kk.

If C(y) is M♮-convex for any realized sample path, then E [C(y)] is M♮-convex over multiple sample

paths as the (L1[Z]) and (L2[Z]) conditions continue to hold summed over multiple sample paths.

Thus, the expected total cost E [C(y)] is M-convex in y. □

Proof of Proposition 5. We provide a counterexample with L= 3 with y = (1,1,1), and (i, j, k) =

(1,2,3). The sample paths for the six configurations of y appearing in (L2[Z]) are displayed in Table 8.

For t= 3 in this example, we observe

3∑
n=1

Sn((1,2,2)) +
3∑

n=1
Sn((2,1,1)) = 18

>
3∑

n=1
Sn((2,1,2)) +

3∑
n=1

Sn((1,2,1)) = 17

>
3∑

n=1
Sn((2,2,1)) +

3∑
n=1

Sn((1,1,2)) = 16.

If the number of arrivals by period 3 exceeds 18,
∑3

t=1 at ≥ 18, and I0 = 0, then (L2[Z]) is violated

for −Wt(y). □

Proof of Lemma 5. The proof is by induction. In period t= 1, (16) becomes

S1(y) = min{d0 + d1, y} ,
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Table 8 Counterexample sample path with L = 3.
Period t 1 2 3 1 2 3
Departures dt 9 0 0 9 0 0
Shift Starts yt 2 1 2 1 2 1
Active zt(y) 2 3 5 1 3 4
Vacant Dirty Vt(y) 9 7 4 9 8 5
Starts St(y) 2 3 4 1 3 4
Total Starts

∑t
n=1 St(y) 2 5 9 1 4 8

Shift Starts yt 2 2 1 1 1 2
Active zt(y) 2 4 5 1 2 4
Vacant Dirty Vt(y) 9 7 3 9 8 6
Starts St(y) 2 4 3 1 2 4
Total Starts

∑t
n=1 St(y) 2 6 9 1 3 7

Shift Starts yt 1 2 2 2 1 1
Active zt(y) 1 3 5 2 3 4
Vacant Dirty Vt(y) 9 8 5 9 7 4
Starts St(y) 1 3 5 2 3 4
Total Starts

∑t
n=1 St(y) 1 4 9 2 5 9

which is concave and non-decreasing in y. Assuming the inductive hypothesis,
∑t′

n=1 Sn(y) is discretely
concave and non-decreasing in y, for t′ < t, we must prove

∑t
n=1 Sn(y) is also discretely concave and

non-decreasing in y. We begin by rewriting the cumulative sum using (16) as
t∑

n=1
Sn(y) =

t−1∑
n=1

Sn(y) +St(y) =
t−1∑
n=1

Sn(y) + min
{
Vt(y), y−

t−1∑
n=t−H+1

Sn(y)
}
,

which can be rewritten using (1) as
t∑

n=1
Sn(y) =

t−1∑
n=1

Sn(y) + min
{

t∑
n=0

dn−
t−1∑
n=1

Sn(y), y−
t−1∑

n=t−H+1
Sn(y)

}
,

which is equivalent to
t∑

n=1
Sn(y) = min

{
t∑

n=0
dn, y+

t−H∑
n=1

Sn(y)
}
.

Because
∑t−H

n=1 Sn(y) is concave in y by the inductive assumption, y+
∑t−H

n=1 Sn(y) is also concave in
y. By the properties of concave functions and minimum operators, min

{∑t
n=1 dn, y+

∑t−H
n=1 Sn(y)

}
is also concave in y.

We use a similar approach to show that
∑t

n=1 Sn(y+ 1)≥
∑t

n=1 Sn(y), which implies
∑t

n=1 Sn(·)
is non-decreasing in y. Substituting Sn(y+ 1) and Sn(y) as above using (16) and (1), the inequality
becomes

t−1∑
n=1

Sn(y+ 1) + min
{

t∑
n=0

dn−
t−1∑
n=1

Sn(y+ 1), y+ 1−
t−1∑

n=t−H+1
Sn(y+ 1)

}

≥
t−1∑
n=1

Sn(y) + min
{

t∑
n=0

dn−
t−1∑
n=1

Sn(y), y−
t−1∑

n=t−H+1
Sn(y)

}
,
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Table 9 Example system with one arrival in period 1, one departure in period 1, one server working only in
period 1, another server working only in period 6, and a cleaning duration of H = 2 periods (d0 = a0 = I0 = V0 = 0).

Time Period t 1 2 3 4 5 6 7 8
Departures dt 1 0 0 0 0 0 0 0
Arrivals at 1 0 0 0 0 0 0 0
Active Servers zt 1 0 0 0 0 1 0 0
Available Servers Rt 1 -1 1 -1 1 0 0 0
Vacant Dirty Resources Vt 1 0 1 0 1 0 0 0
Resources for which Service Starts St 1 -1 1 -1 1 0 0 0
Inventory Position It -1 -1 0 -1 0 -1 0 0
Waiting Customers Wt 1 1 0 1 0 1 0 0

which is equivalent to

min
{

t∑
n=0

dn, y+ 1 +
t−H∑
n=1

Sn(y+ 1)
}
≥min

{
t∑

n=0
dn, y+

t−H∑
n=1

Sn(y)
}
. (42)

Next, we observe that y + 1 +
∑t−H

n=1 Sn(y + 1) ≥ y +
∑t−H

n=1 Sn(y) because y + 1 > y and∑t−H
n=1 Sn(y + 1) ≥

∑t−H
n=1 Sn(y) by the inductive hypothesis. Furthermore, we observe that if y +

1 +
∑t−H

n=1 Sn(y + 1) ≥ y +
∑t−H

n=1 Sn(y), then we have min
{∑t

n=0 dn, y+ 1 +
∑t−H

n=1 Sn(y+ 1)
}
≥

min
{∑t

n=0 dn, y+
∑t−H

n=1 Sn(y)
}
. Thus,

∑t
n=1 Sn(y) is non-decreasing in y. □

Proof of Proposition 6. Using (3), we can express the number of customers waiting at the end of
period t as

Wt(y) =
[

t−H∑
n=1

Sn(y)−
t∑

n=1
an

]−

= max
{

0,
t∑

n=1
an−

t−H∑
n=1

Sn(y)
}
.

By Lemma 5, we know that −
∑t−H

n=1 Sn(y) is concave and non-decreasing in y. Thus, Wt(y) is convex
and non-increasing in y because of the properties for a convex and non-increasing function with the
addition of

∑t
n=0 an and the maximum expression resulting and 0. □

Proof of Proposition 7. By Proposition 6,
(∑T

t=1 btWt(y)
)

is convex and non-increasing for any
d1, . . . , dT and a1, . . . , aT . Also, ky is convex in y. As the sum of two convex functions, (17) is also con-
vex in y. Because this holds for any realization of departures and arrivals, it also holds in expectation.
□

2. Break and End-of-Shift Service Assumption
To avoid complicating our state equations to handle a server’s break or shift end when no other
servers are available, we assume (5) is the number of available servers in any period. Table 9 shows
how this assumption works for a simple system with one arrival and one departure and a resource
with a turnaround time of H = 2 periods. One server provides one of the two required time units of
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service to the resource in period 1 and is no longer available. Another server is available in period
6 and completes the service so that the resource can be allocated at the beginning of period 7. Our
assumption means that the number of available servers oscillates between -1 and 1 from periods 2 to
5, and the number of waiting customers oscillates between 1 and 0. Thus, a waiting cost is assessed
for half of the periods during which the resource is waiting for service to resume.

We offer an alternate model that more explicitly models server availability during breaks and at
the end of a shift in Section 3 of the online supplement. While we do not have analytical results for
this model, our numerical testing leads us to believe that the alternate model has the same properties
as the model presented in this section. Also, only negligible differences exist for the two models in
their estimation of policy performance.

This approach represents a compromise in which the key performance metrics are bounded by two
policies: servers do not begin servicing a resource if they cannot complete it before a break or shift
completion, and servers delay their break to complete servicing the resource or stay overtime and
complete their work. In effect, any rooms not completed by the break are fractionally allocated to a
guest until sufficient capacity is available again.

3. Alternate Model for End-of-Shift and Break Policies
We describe the state equations for an alternate model of room cleaning that avoids the assumption
stated in (5). In particular, this model explicitly tracks the number of time periods of cleaning
required for each vacant dirty resource and does not allow a resource to be allocated until it is fully
cleaned. We assume that resources with the fewest number of periods of cleaning remaining preempt
cleaning of any other resources; e.g., if the server cleaning a resource with only 1 period of cleaning
remaining goes on break, a server working on a resource with many more periods remaining will
switch to that resource. While this may not exactly reflect common practice — i.e., a hotel room
attendant might just complete a room before going on break — this assumption allows for relatively
simple state equations that avoid dynamic decision making about break timing. If the server were
to wait to take a break until the resource is completely serviced, the model’s estimate of resource
availability would be slightly conservative.

Let Vtk(y) represent the number of vacant dirty resources in period t= 0, . . . , T with k = 1, . . . ,H
periods of cleaning remaining until it can be allocated to a new customer. Also, we use Stk(y) to
denote the number of resources with k servicing periods remaining that are serviced in period t. The
zt(y) active servers may each perform one period of servicing; i.e., min

{
zt(y),

∑H
k=1 Vtk(y)

}
resources

receive servicing so that their state advances from k to k− 1 in period t. Resource service priority
increases as k decreases so that, in each period t= 1, . . . , T it can be defined recursively as

St,k(y) := min
{
Vt,k(y), zt(y)−

k−1∑
m=1

St,m(y)
}

(43)



Li and Slaugh: Capacity Planning for Resource Turnaround Operations 17

for k= 1, . . . ,H. Furthermore, we also have the following recursive state equations for each period t:

Vt,H(y) := Vt−1,H(y) +Dt−St−1,H(y), (44)

Vt,k(y) := Vt−1,k(y) +St−1,k+1(y)−St−1,k(y), k= 1, . . . ,H − 1, (45)

It(y) := It−1(y)−At +St−1,1(y). (46)

All other system definitions from Section 3 continue to apply.

4. Algorithms
Algorithm 1 finds a solution that performs at most 1

2 worse than the optimal solution. Algorithm 1
is based on the first algorithm in Soma and Yoshida (2017) but has two differences: first, we aim
to minimize a DR-supermodular function instead of maximizing a DR-submodular function; second,
the cardinality constraint B ∈ ZN

+ : y < B need not to be binding in our case. To achieve this, one
can set the cardinality constraint B to be a vector of large values, e.g. the total number of hotel
rooms. For problems that have a specific cardinality constraint, one can set B accordingly and still
obtain the guarantee of the 1/2 optimality rate. Let B′ denote a sufficiently large vector of capacity
constraint and let g(χe | x) denote g(x+χe)−g(x), we modify the algorithm in the following manner:
Algorithm 1: Pseudopolynomial-time algorithm for minimizing a DR-supermodular function
Input: DR-supermodular function f :ZN

+ →R, large capacity upper bound B′ ∈ZN
+ or actual

capacity upper bound B ∈ZN
+

Output: Approximate minimizer x∈ZN
+

1 Define g(x) =−f(x);
2 Initialize x← 0, y←B′;
3 foreach t∈ β do
4 while xt < yt do
5 α← g(et | x);
6 γ← g(−et | y);
7 if γ < 0 then
8 xt← xt + 1;
9 else

10 if α < 0 then
11 yt← yt− 1;
12 else
13 With probability α

α+γ
, set xt← xt + 1;

14 Otherwise, set yt← yt− 1;
15 end
16 end
17 end
18 end
19 return x;

Algorithm 2 implements the Steepest Descent Algorithm in Shioura (2022) to find the minimizer
of an M-convex function. However, rather than starting from the vector 0, we specify an input y0 as
the initial search point. Note that this algorithm searches within a constrained hyperplane; therefore,
it requires sufficiently large capacity Y ∈Z+ as an input. Let || · ||1 denote the L1−norm of a vector.
For any initial input y0, we add Y − ||y0||1 as the slack element for y0 to ensure that the search



18 Li and Slaugh: Capacity Planning for Resource Turnaround Operations

is within a constrained hyperplane. The value of Y — as long as it is sufficiently large — does not
affect the search itself, as the value for the slack element, Y − ||y0||1, does not enter the objective
function.
Algorithm 2: Steepest Descent for an M-Convex Function
Input: f :ZN

+ →R+, y0 ∈ZN
+ , sufficiently large number Y ∈Z+

Output: y ∈ZN
+

1 ỹ← (y0, Y − ||y0||1);

2 Find the i, j pair that maximizes f(ỹ)− f(ỹ + ei− ej);

3 while f(ỹ)− f(ỹ + ei− ej) > 0 do
4 Find the i, j pair that maximizes f(ỹ)− f(ỹ + ei− ej);

5 ỹ← ỹ + ei− ej ;
6 end
7 return y (ỹ without the slack element);

5. Additional Results for Workers with Short Shifts
In our conversations with hotel workforce strategists, they identified workers interested in shifts
lasting less than 8 hours as a labor pool that hotels might need to utilize. For example, they envision
high school or college students as labor sources for working shorter shifts at hotels in urban markets.
Alternatively, part-time workers in this model could represent cross-trained workers who clean rooms
for half of their shift and fulfill some other role for the remainder of their shift. In theory, using
part-time workers should be advantageous for hotels due to the ability to schedule capacity when it is
most needed. For our comparison, part-time room attendants have a shift cost and timing structure
that maintains the same cost per room cleaned as full-time workers when fully utilized: kp = $120
for a four-hour shift, which includes 12.5 minutes of start-up time before cleaning the first room and
no breaks during the four-hour shift. Thus, two part-time room attendants have the same pay and
cleaning capacity as one full-time room attendant.

Table 10 Optimal schedules with part-time room attendants working 4-hour shifts and 1,300 rooms to clean.

Shift Start Time Total
8 AM 9 AM 10 AM 11 AM 12 PM 1 PM 2 PM 3 PM 4 PM 5 PM 6 PM

Current Practice 0 90 0 0 0 0 0 0 10 0 0 100
Optimal Full-time 34 23 22 3 5 5 5 0 0 1 1 100

Optimal with
Part-time

Part-Time 5 74 9 22 19 0 1 2 51 2 15 200
Full-Time 0 0 0 0 0 0 0 0 0 0 0 0

Table 10 shows the optimal schedule with the option to choose full-time or part-time room at-
tendants and 1,300 rooms to clean. Highlighting the value of flexible capacity that can be employed
with more precision, the optimal solution chooses 200 part-time room attendants and 0 full-time
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Table 11 Optimal schedules with a maximum of 50 part-time room attendants available to work 4-hour shifts.

Number of Rooms
to Clean

Schedule Total
8 am 9 am 10 am 11 am 12 am 1 pm 2 pm 3 pm 4 pm 5 pm 6 pm

1600 Part-Time 9 0 0 0 0 0 0 0 21 3 17 50
Full-Time 15 26 42 8 6 4 0 0 0 0 0 101

1900 Part-Time 3 0 0 0 0 0 0 7 18 1 21 50
Full-Time 17 44 42 13 9 0 0 0 0 0 0 125

room attendants. This result is expected as two part-time workers have the same cleaning capacity
and cost as one full-time worker but allow for added flexibility. Because it is possible to achieve a
solution with negligible waiting using only full-time workers, the benefits of part-time workers are
not immediately obvious for this specific scenario. However, under a more realistic scenario with
a maximum of 50 part-time workers, part-time workers can sometimes help the hotel reducing the
number of full-time equivalent workers through better targeting capacity allocation. In particular,
Table 11 shows a decrease in the required staffing level for the scenarios with a high volume of rooms
to clean. For the scenarios with 1,600 and 1,900 rooms to clean, using part-time workers can reduce
the staffing level needed by the equivalent of 3 and 6 full-time workers, respectively. In both cases,
the waiting costs remain less than $5. Part-time workers appear to be particularly valuable in the late
afternoon and evening. This analysis shows the usefulness of part-time workers or alternate sources
of shorter-term capacity in helping a hotel to clean all rooms in time to avoid customer waiting.

6. Sample Average Approximation Accuracy Test
We numerically determine the size of the sample paths required to solve our problem using sample
average approximation. method numerically. For different sizes of solving sample path, we generate
100 sets of solving and testing sample paths. Then, we find the optimal solution for the solving
sample paths and evaluate the resulting solution on the testing sample paths. Finally, we solve the
testing sample path optimally to check if it corresponds to the solution given by the solving sample
path. Table 12 confirms that 100 solving sample paths and 100 testing sample paths are sufficient
to solve the problem: the in-sample solution is 100% optimal when evaluated on the testing sample
paths. Also, the in-sample average total cost is nearly identical to that of the testing sample paths.
Therefore, we set the solving and testing sample-paths size to be 100 for our analysis.
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Table 12 Solution accuracy based on the number of sample paths (solving and testing) and 100 replications.

Evaluation Design Performance Measure
Sample Paths MSE MAPE Optimal Rate

50 $0.79 0.0006% 98%
100 $0.26 0.0003% 100%
200 $0.25 0.0003% 100%
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